Skip to main content

Advanced Models of Cortical Dynamics in Perception

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (IV)

Abstract

Here the phenomenon of interest is the flash of recognition and accompanying emotion one experiences when one receives a familiar stimulus. We explain the speed and richness of the event by postulating phase transitions in cortical neuropil: condensation from a gas-like phase to a liquid-like phase followed by evaporation. We model the process with a Carnot-like thermodynamic cycle at three successive levels of complexity: primary sensory cortices; limbic system; global neocortex. We replace the thermodynamic state variables of pressure, volume and temperature with neurodynamic variables, respectively mean beta-gamma power, pattern stability (negentropy), and neural feedback gain (mean interaction strength). We cite evidence that all sensory cortices use this cycle, necessarily so for two reasons. They all evolved from the primordial forebrain of vertebrates dominated by olfaction; they all transmit the same form of perceptual information, wave packets, so signals in all modalities armodel by linear matrix concatenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman WJ, Quian Quiroga R (2013) Imaging Brain Function with EEG: Advanced Temporal and Spatial imaging of Electroencephalographic Signals. New York: Springer.

    Book  Google Scholar 

  2. Fuster, J.M. (2006) The cognit: a network model of cortical representation. International Journal of Psychophysiology 60:125–132.

    Article  PubMed  Google Scholar 

  3. Taylor JG (1998) Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern 80: 393–409.

    Article  Google Scholar 

  4. Tononi G (2004) An information integration theory of consciousness. BMC Neurosci. 5: 42.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Freeman WJ (1975) Mass Action in the Nervous System New York: Academic. http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

  6. Capolupo A, Freeman WJ, Vitiello G (2013) Dissipation of ‘dark energy’ by cortex in knowledge retrieval. Physics of Life Reviews, on-line. DOI: 10.1016/j.plrev.2013.01.001

    Google Scholar 

  7. Capolupo A, Freeman WJ, Vitiello G (this volume) The dissipative many-body model and phase transitions in brain nonlinear dynamics.

    Google Scholar 

  8. Freeman WJ. Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cognitive Neurodynamics (2009) 3(1): 105–116.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rice SO. Mathematical analysis of random noise. Technical publications monographs, vol. B-1589. New York: Bell Telephone Labs (1950).

    Google Scholar 

  10. Freeman WJ, Livi R, Obinata M, Vitiello G (2012) Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. Int J Mod Phys B 26 (6): 1250035. DOI: 10.1142/S021797921250035Xx

    Article  Google Scholar 

  11. Kozma, R, Puljic M, Freeman WJ (this volume) Thermodynamic model of criticality in the cortex based on EEG/ECoG Data. Chapter 1 in: Plenz D (ed), “Criticality in Neural Systems”. NY: Wiley, (2012) 1–28

    Google Scholar 

  12. Quian Quiroga R. Concept cells: The building blocks of declarative memory functions. Nature Rev Neuroscience 13 (2012): 587–597.

    Google Scholar 

  13. Quian Quiroga R (this volume) Concept cells in the human brain

    Google Scholar 

  14. Ruiz Y, Pockett S, Freeman WJ, Gonzales E, Li Guang (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neuroscience Methods 191: 110–118. doi:10.1016/j.jneumeth.2010.05.021

    Article  Google Scholar 

  15. Brockmeier AJ, Hazrati MK, Freeman WJ, Li L, Principe JC (2012) Locating spatial patterns of waveforms during sensory perception in scalp EEG. EMBC Ann Intern Conf IEEE, pp. 2531–2534, doi: 10.1109/EMBC.2012.6346479

  16. Zhang T, Dai L, Wang Y, Freeman WJ, Li G (this volume) EEG spatiotemporal pattern classification of the stimuli on different fingers

    Google Scholar 

  17. Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguous one. J Neurophysiol 5(2):89–108. (first use of ‘ephapsis’)

    Google Scholar 

  18. Wall PD, Lidierth M (1997) Five sources of a dorsal root potential: their interactions and origins in the superficial dorsal horn. Neurophysiol 78(2): 860–871.

    CAS  Google Scholar 

  19. Steriade M, Amzica F (1994) Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. J Neurophysiol 72(5): 2051–2069.

    CAS  PubMed  Google Scholar 

  20. Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nature Neurosci 14: 217–223. doi:10.1038/nn.2727

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Freeman, W.J., Kozma, R., Li, G., Quiroga, R.Q., Vitiello, G., Zhang, T. (2015). Advanced Models of Cortical Dynamics in Perception. In: Liljenström, H. (eds) Advances in Cognitive Neurodynamics (IV). Advances in Cognitive Neurodynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9548-7_17

Download citation

Publish with us

Policies and ethics