Advertisement

Advanced Models of Cortical Dynamics in Perception

  • Walter J. FreemanEmail author
  • Robert Kozma
  • Guang Li
  • Rodrigo Quian Quiroga
  • Giuseppe Vitiello
  • Tinglin Zhang
Conference paper
Part of the Advances in Cognitive Neurodynamics book series (ICCN)

Abstract

Here the phenomenon of interest is the flash of recognition and accompanying emotion one experiences when one receives a familiar stimulus. We explain the speed and richness of the event by postulating phase transitions in cortical neuropil: condensation from a gas-like phase to a liquid-like phase followed by evaporation. We model the process with a Carnot-like thermodynamic cycle at three successive levels of complexity: primary sensory cortices; limbic system; global neocortex. We replace the thermodynamic state variables of pressure, volume and temperature with neurodynamic variables, respectively mean beta-gamma power, pattern stability (negentropy), and neural feedback gain (mean interaction strength). We cite evidence that all sensory cortices use this cycle, necessarily so for two reasons. They all evolved from the primordial forebrain of vertebrates dominated by olfaction; they all transmit the same form of perceptual information, wave packets, so signals in all modalities armodel by linear matrix concatenation.

Keywords

Carnot cycle Criticality Ephapsis Hebbian assembly Memory Phase transition Wave packet 

References

  1. 1.
    Freeman WJ, Quian Quiroga R (2013) Imaging Brain Function with EEG: Advanced Temporal and Spatial imaging of Electroencephalographic Signals. New York: Springer.CrossRefGoogle Scholar
  2. 2.
    Fuster, J.M. (2006) The cognit: a network model of cortical representation. International Journal of Psychophysiology 60:125–132.PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor JG (1998) Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern 80: 393–409.CrossRefGoogle Scholar
  4. 4.
    Tononi G (2004) An information integration theory of consciousness. BMC Neurosci. 5: 42.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Freeman WJ (1975) Mass Action in the Nervous System New York: Academic. http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html
  6. 6.
    Capolupo A, Freeman WJ, Vitiello G (2013) Dissipation of ‘dark energy’ by cortex in knowledge retrieval. Physics of Life Reviews, on-line. DOI:  10.1016/j.plrev.2013.01.001 Google Scholar
  7. 7.
    Capolupo A, Freeman WJ, Vitiello G (this volume) The dissipative many-body model and phase transitions in brain nonlinear dynamics.Google Scholar
  8. 8.
    Freeman WJ. Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cognitive Neurodynamics (2009) 3(1): 105–116.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Rice SO. Mathematical analysis of random noise. Technical publications monographs, vol. B-1589. New York: Bell Telephone Labs (1950).Google Scholar
  10. 10.
    Freeman WJ, Livi R, Obinata M, Vitiello G (2012) Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. Int J Mod Phys B 26 (6): 1250035. DOI:  10.1142/S021797921250035Xx CrossRefGoogle Scholar
  11. 11.
    Kozma, R, Puljic M, Freeman WJ (this volume) Thermodynamic model of criticality in the cortex based on EEG/ECoG Data. Chapter 1 in: Plenz D (ed), “Criticality in Neural Systems”. NY: Wiley, (2012) 1–28Google Scholar
  12. 12.
    Quian Quiroga R. Concept cells: The building blocks of declarative memory functions. Nature Rev Neuroscience 13 (2012): 587–597.Google Scholar
  13. 13.
    Quian Quiroga R (this volume) Concept cells in the human brainGoogle Scholar
  14. 14.
    Ruiz Y, Pockett S, Freeman WJ, Gonzales E, Li Guang (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neuroscience Methods 191: 110–118. doi: 10.1016/j.jneumeth.2010.05.021 CrossRefGoogle Scholar
  15. 15.
    Brockmeier AJ, Hazrati MK, Freeman WJ, Li L, Principe JC (2012) Locating spatial patterns of waveforms during sensory perception in scalp EEG. EMBC Ann Intern Conf IEEE, pp. 2531–2534, doi:  10.1109/EMBC.2012.6346479
  16. 16.
    Zhang T, Dai L, Wang Y, Freeman WJ, Li G (this volume) EEG spatiotemporal pattern classification of the stimuli on different fingersGoogle Scholar
  17. 17.
    Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguous one. J Neurophysiol 5(2):89–108. (first use of ‘ephapsis’)Google Scholar
  18. 18.
    Wall PD, Lidierth M (1997) Five sources of a dorsal root potential: their interactions and origins in the superficial dorsal horn. Neurophysiol 78(2): 860–871.Google Scholar
  19. 19.
    Steriade M, Amzica F (1994) Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. J Neurophysiol 72(5): 2051–2069.PubMedGoogle Scholar
  20. 20.
    Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nature Neurosci 14: 217–223. doi: 10.1038/nn.2727 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Walter J. Freeman
    • 1
    Email author
  • Robert Kozma
    • 2
  • Guang Li
    • 3
  • Rodrigo Quian Quiroga
    • 4
  • Giuseppe Vitiello
    • 5
  • Tinglin Zhang
    • 3
  1. 1.Division of Neurobiology, Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Mathematical SciencesUniversity of MemphisMemphisUSA
  3. 3.Department of Control Science and Engineering, State Key Lab of Industrial Control TechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  4. 4.Centre for Systems NeuroscienceUniversity of LeicesterLeicesterUK
  5. 5.Dipartimento di FisicaUniversity of SalernoFiscianoItaly

Personalised recommendations