Metabolic Engineering of Microorganisms for Biosynthesis of Antibiotics

  • Vijai Singh
  • Indra Mani
  • Dharmendra Kumar Chaudhary


Number of microorganisms produces antibiotics that can inhibit or kill the other microbes. The production of some antibiotics is not sufficient in native host rather difficult to synthesize chemically and to extract in large amounts for commercialization. Metabolic engineering plays an increasingly significant role in the production of antibiotics and its precursors. Thus, we engineer biosynthetic pathways in desire host for the production of sufficient quantity of antibiotics. In this chapter, we illustrated bioengineering of different microbes using synthetic biology and metabolic engineering approaches for production and regulation of antibiotics.


Biosynthetic pathway Disease Antibiotics Metabolic engineering Gene regulation Synthetic biology 



Authors wish to thank A.K. Singh, Satya Prakash and Pritee Singh for providing the suggestions, encouragement and fruitful discussion during preparation of this chapter.


  1. Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9:461–465Google Scholar
  2. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050Google Scholar
  3. Asadollahi MA, Maury J, Møller K et al (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677Google Scholar
  4. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675Google Scholar
  5. Baker-Austin C, Wright MS, Stepanauskas R et al (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182Google Scholar
  6. Bosch F, Rosich L (2008) The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology 82:171–179Google Scholar
  7. Carbonell P, Planson AG, Fichera D et al (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122Google Scholar
  8. Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681Google Scholar
  9. Chen Y, Deng W, Wu J et al (2008) Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation. Appl Environ Microbiol 74:1820–1828Google Scholar
  10. Eustaquio AS, Gust B, Li SM et al (2004) Production of 8-halogenated and 8-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11:1561–1572Google Scholar
  11. Florey HW (1945) Use of micro-organisms for therapeutic purposes. Br Med J 2:635–642Google Scholar
  12. Garg RP, Xuelei LQ, Lawrence BA et al (2008) Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc Natl Acad Sci U S A 105:6543–6547Google Scholar
  13. Heinzmann S, Entian KD, Stein T (2006) Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69:532–536Google Scholar
  14. Herold K, Xu Z, Gollmick FA et al (2004) Biosynthesis of cervimycin C an aromatic polyketide antibiotic bearing an unusual dimethylmalonyl moiety. Org Biomol Chem 2:2411–2414Google Scholar
  15. Huang D, Jia X, Wen J et al (2011) Metabolic flux analysis and principal nodes identification for daptomycin production improvement by Streptomyces roseosporus. Appl Biochem Biotechnol 165:1725–1739Google Scholar
  16. Jung WS, Lee SK, Hong JS et al (2006) Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbiol Biotechnol 72:763–769Google Scholar
  17. Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435Google Scholar
  18. Kurumbang NP, Park JW, Yoon YJ et al (2010) Heterologous production of ribostamycin derivatives in engineered Escherichia coli. Res Microbiol 161:526–533Google Scholar
  19. Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:e45Google Scholar
  20. Lee SY, Kim HU, Park JH Kim TY et al (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14:78–88Google Scholar
  21. Levy SB (1994) Balancing the drug-resistance equation. Trends Microbiol 2:341–342Google Scholar
  22. Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8:240–252Google Scholar
  23. Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511Google Scholar
  24. Maharjan S, Koju D, Lee HC et al (2012) Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A. Appl Biochem Biotechnol 166:805–817Google Scholar
  25. Marshall CG, Lessard IA, Park I et al (1998) Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42:2215–2220Google Scholar
  26. Menzella HG, Reeves CD (2007) Combinatorial biosynthesis for drug development. Curr Opin Microbiol 10:238–245Google Scholar
  27. Menzella HG, Reid R, Carney JR et al (2005) Combinatorial polyketide biosynthesis by De Novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176Google Scholar
  28. Minami H, Kim JS, Ikezawa N et al (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 105:7393–7398Google Scholar
  29. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146Google Scholar
  30. Niraula NP, Kim SH, Sohng JK et al (2010) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 87:1187–1194Google Scholar
  31. Nguyen KT, Ritz D, Gu JQ et al (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci U S A 103:17462–17467Google Scholar
  32. Park SY, Choi SK, Kim J et al (2012) Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene. Appl Environ Microbiol 78:4194–4199Google Scholar
  33. Penn J, Li X, Whiting A et al (2006) Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol 33:121–128Google Scholar
  34. Pfeifer BA, Admiraa SJ, Gramajo H et al (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792Google Scholar
  35. Pfleger BF, Pitera DJ, Smolke CD et al (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032Google Scholar
  36. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943Google Scholar
  37. Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San DiegoGoogle Scholar
  38. Tang Z, Xiao C, Zhuang Y et al (2011) Improved oxytetracycline production in Streptomyces rimosus M4018 bymetabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 49:17–24Google Scholar
  39. Teijeira F, Ullán RV, Fernández-Aguado M et al (2011) CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 13:532–543Google Scholar
  40. Van Epps HL (2006) René Dubos: unearthing antibiotics. J Exp Med 203:259Google Scholar
  41. Veiga T, Solis-Escalante D, Romagnoli G et al (2012) Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum. Eukaryot Cell 11:238–249Google Scholar
  42. Von Nussbaum F, Brands M, Hinzen B et al (2006) Medicinal chemistry of antibacterial natural products—exodus or revival? Angew Chem Int Ed Engl 45:5072–5129Google Scholar
  43. Vrijbloed JW, Zerbe-Burkhardt K, Ratnatilleke A et al (1999) Insertional inactivation of methylmalonyl coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Streptomyces cinnamonensis: influence on polyketide antibiotic biosynthesis. J Bacteriol 181:5600–5605Google Scholar
  44. Waksman SA (1947) What is an antibiotic or an antibiotic substance? Mycologia 39:565–569Google Scholar
  45. Weber JM, Cernota WH, Gonzalez MC et al (2012). An erythromycin process improvement using the diethyl methylmalonate-responsive (Dmr) phenotype of the Saccharopolyspora erythraea mutB strain. Appl Microbiol Biotechnol 93:1575–1583Google Scholar
  46. Weissman, KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936Google Scholar
  47. White NJ (1997) Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 41:1413–1422Google Scholar
  48. Witte W (2004) International dissemination of antibiotic resistant strains of bacterial pathogens. Infect Genet Evol 4:187–191Google Scholar
  49. Woodyer RD, Shao Z, Thomas PM et al (2006) Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem Biol 13:1171–1182Google Scholar
  50. Wu Y, Kang Q, Shen Y et al (2011) Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS. Mol Biosyst 7:2459–2469Google Scholar
  51. Yang F, Cao Y (2012) Biosynthesis of phloroglucinol compounds in microorganisms-review. Appl Microbiol Biotechnol 93:487–495Google Scholar
  52. Zhai L, Lin S, Qu D et al (2012) Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab Eng 14:388–393Google Scholar
  53. Zhang W, Ames BD, Tsai SC et al (2006) Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 72:2573–2580Google Scholar
  54. Zhang H, Skalina K, Jiang M et al (2012) Improved E. coli erythromycin A production through the application of metabolic and bioprocess engineering. Biotechnol Prog 28:292–296Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Vijai Singh
    • 1
  • Indra Mani
    • 2
    • 3
  • Dharmendra Kumar Chaudhary
    • 3
  1. 1.Synth-Bio Group, Institute of Systems & Synthetic BiologyUniversity of EvryÉVRYFrance
  2. 2.National Bureau of Fish Genetic ResourcesLucknowIndia
  3. 3.Department of Biochemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations