DNA Structure and Promoter Engineering

Chapter

Abstract

Transcription initiation is the first step in the regulation of gene expression. Promoters are the regions of genomic DNA where transcription initiation machinery assembles and are generally characterized by presence of short nucleotide sequence motifs like TATA-box, Inr element, BRE, etc. However, apart from these motifs, promoter regions have been reported to have structural properties, such as lower stability, lesser bendability and more curvature compared to other genomic regions. Interestingly, these properties are conserved from archaea to mammals, with little differences. Several algorithms have been developed to differentiate promoter regions from non promoters, using DNA structural properties. Here we show that, in E. coli and S. cerevisiae, genes with different experimentally determined expression levels, differ in their structural features. Promoters of highly expressed or less responsive genes are less stable, less bendable and more curved compared to promoters of lowly expressed or more responsive genes. This suggests that these structural properties can be used to design promoters to modulate gene expression.

Keywords

Promoter engineering DNA structural properties DNA duplex stability DNA bendability Intrinsic curvature NUCRADGEN Transcription factor binding sites (TFBSs) 

References

  1. Allawi HT, SantaLucia J (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36(34):10581–10594PubMedCrossRefGoogle Scholar
  2. Bansal M, Bhattacharyya D, Ravi B (1995) NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Comput Appl Biosci 11(3):281–287PubMedGoogle Scholar
  3. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699–709PubMedCrossRefGoogle Scholar
  4. Bhattacharya D, Bansal M (1988) A general procedure for generation of curved DNA molecules. J Biomol Struct Dyn 6(1):93–104PubMedCrossRefGoogle Scholar
  5. Bi C, Benham CJ (2004) WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics 20(9):1477–1479PubMedCrossRefGoogle Scholar
  6. Bolshoy A, McNamara P, Harrington RE, Trifonov EN (1991) Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A 88(6):2312–2316PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bracco L, Kotlarz D, Kolb A, Diekmann S, Buc H (1989) Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 8(13):4289–4296PubMedCentralPubMedGoogle Scholar
  8. Brukner I, Sanchez R, Suck D, Pongor S (1995) Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J 14(8):1812–1818PubMedCentralPubMedGoogle Scholar
  9. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635PubMedCrossRefGoogle Scholar
  10. Choi JK, Kim YJ (2009) Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet 41(4):498–503PubMedCrossRefGoogle Scholar
  11. Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 17(23):7033–7043PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 39(Database issue):98–105CrossRefGoogle Scholar
  13. Gartenberg MR, Crothers DM (1991) Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. J Mol Biol 219(2):217–230PubMedCrossRefGoogle Scholar
  14. Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr 59(4):620–626PubMedCrossRefGoogle Scholar
  15. Haran TE, Mohanty U (2009) The unique structure of A-tracts and intrinsic DNA bending. Q Rev Biophys 42(1):41–81PubMedCrossRefGoogle Scholar
  16. Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35(2):406–413PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172PubMedCrossRefGoogle Scholar
  18. Kanhere A, Bansal M (2005) Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res 33(10):3165–3175PubMedCentralPubMedCrossRefGoogle Scholar
  19. Meysman P, Marchal K, Engelen K (2012) DNA structural properties in the classification of genomic transcription regulation elements. Bioinform Biol Insights 6:155–168PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628PubMedCrossRefGoogle Scholar
  21. Pedersen AG, Baldi P, Chauvin Y, Brunak S (1998) DNA structure in human RNA polymerase II promoters. J Mol Biol 281(4):663–673PubMedCrossRefGoogle Scholar
  22. Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B (2004) The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 51(2):523–537PubMedCrossRefGoogle Scholar
  23. Rangannan V, Bansal M (2010) High-quality annotation of promoter regions for 913 bacterial genomes. Bioinformatics 26(24):3043–3050PubMedCrossRefGoogle Scholar
  24. Ranjan R, Patro S, Pradhan B, Kumar A, Maiti IB, Dey N (2012) Development and functional analysis of novel genetic promoters using DNA shuffling, hybridization and a combination thereof. PLoS ONE 7(3):e3193–1CrossRefGoogle Scholar
  25. Raveh-Sadka T, Levo M, Shabi U, Shany B, Keren L, Lotan-Pompan M, Zeevi D, Sharon E, Weinberger A, Segal E (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44(7):743–750PubMedCrossRefGoogle Scholar
  26. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465PubMedCentralPubMedCrossRefGoogle Scholar
  27. Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191(4):659–675PubMedCrossRefGoogle Scholar
  28. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z, Weinberger A, Segal E (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30(6):521–530PubMedCentralPubMedCrossRefGoogle Scholar
  29. Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72: 449–479PubMedCrossRefGoogle Scholar
  30. Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K (2008) DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res 36(Database issue):97–101Google Scholar
  31. Wang H, Noordewier M, Benham CJ (2004) Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters. Genome Res 14(8): 1575–1584PubMedCentralPubMedCrossRefGoogle Scholar
  32. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Venkata Rajesh Yella
    • 1
  • Aditya Kumar
    • 1
  • Manju Bansal
    • 1
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia

Personalised recommendations