Skip to main content

Effects and Empirical Critical Loads of Nitrogen for Europe

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Abstract

Empirical critical loads of nitrogen (N) were first presented in a background document for a workshop in 1992 in Sweden. Since their first presentation, the critical loads of N have been updated at regular intervals and for a large number of habitats. This chapter presents a brief history of the empirical critical loads and explains the process of determination of empirical critical loads for nitrogen and their reliability. For European habitats (defined as EUNIS and Natura 2000 habitat classes), current empirical critical loads for nitrogen are presented. For each of these habitats, the main effects of enhanced nitrogen inputs are discussed that have formed the basis for the determination of the empirical critical loads. Factors other than nitrogen, that may affect ecosystem processes or ecosystem functioning, are discussed as these may modify the nitrogen critical load under specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

    Google Scholar 

  • Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntsen, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. Bioscience, 48, 921–934.

    Google Scholar 

  • Achermann, B., & Bobbink, R. (Eds.). (2003). Empirical critical loads for nitrogen: Expert workshop (11–13 November 2002). Berne: Swiss Agency for the Environment, Forests and Landscape.

    Google Scholar 

  • Aerts, R., & Chapin, F. S. (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1–67.

    CAS  Google Scholar 

  • Archibold, O. W. (1995). Ecology of world vegetation. London: Chapman & Hall.

    Google Scholar 

  • Arens, S. J. T., Sullivan, P. F., & Welker, J. M. (2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high Arctic ecosystem. Journal of Geophysical Research, 113(G3), 1–10.

    Google Scholar 

  • Arróniz-Crespo, M., Leake, J. R., Horton, P., & Phoenix, G. K. (2008). Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland. New Phytologist, 180, 864–874.

    Google Scholar 

  • Arts, G. H. P. (1990). Deterioration of Atlantic soft-water systems and their flora. Ph. D. Thesis, the Netherlands, Catholic University of Nijmegen.

    Google Scholar 

  • Augustin, S., Bolte, A., Holzhausen, M., & Wolff, B. (2005). Exceedance of critical loads of nitrogen and sulphur and its relation to forest conditions. European Journal of Forest Research, 124, 289–300.

    CAS  Google Scholar 

  • Bassin, S., Volk, M., Suter, M., Buchmann, N., & Fuhrer, J. (2007). Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 years of treatment. New Phytologist, 175, 523–534.

    CAS  Google Scholar 

  • Bassin, S., Werner, R. A., Sörgel, K., Volk, M., Buchmann, N., & Fuhrer, J. (2009). Effects of combined ozone and nitrogen deposition on the in situ properties of eleven key plant species of a subalpine pasture. Oecologia, 58, 474–756.

    Google Scholar 

  • Beltman, B., Kooijman, A. M., Rouwenhorst, G., & van Kerkhoven, M. (1996). Nutrient availability and plant growth limitation in blanket mires in Ireland. Proceedings of the Royal Irish Academy, 96B, 77–87.

    Google Scholar 

  • Berendse, F. (1988). De nutriëntenbalans van droge zandgrondvegetaties in verband met de eutrofiëring via de lucht. Deel 1 Een simulatiemodel als hulpmiddel bij het beheer van vochtige heidevelden. Wageningen: Centrum voor Agrobiologisch Onderzoek.

    Google Scholar 

  • Bergström, A.-K., & Jannson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12, 635–643.

    Google Scholar 

  • Bergström, A.-K., Blomqvist, P. & Jannson, M. (2005). Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnology and Oceanography, 50, 987–994.

    Google Scholar 

  • Bergström, A.-K., Jonsson, A. & Jansson, M. (2008). Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen deposition. Aquatic Biology, 4, 55–64.

    Google Scholar 

  • Bigras, F. J., Ryyppö, A., Lindström, A., & Stattin, E. (2001). Cold acclimation and deacclimation of shoots and roots of conifer seedlings. In F. J. Bigras & S. J. Colombo (Eds.), Conifer cold hardiness. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bobbink, R., & Hettelingh, J.-P. (2011). Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout (23–25 June 2010. (Report 680359002/2011)). Bilthoven: Coordination Centre for Effects, National Institute for Public Health and the Environment.

    Google Scholar 

  • Bobbink, R., Bik, L., & Willems, J. H. (1988). Effects of nitrogen fertilization on vegetation structure and dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands. Acta Botanica Neerlandica, 37, 231–242.

    Google Scholar 

  • Bobbink, R., Boxman, D., Fremstad, E., Heil, G., Houdijk, A., & Roelofs, J. (1992). Critical loads for nitrogen eutrophication of terrestrial and wetland ecosystems based upon changes in vegetation and fauna. In P. Grennfelt & E. Thörnelöv (Eds.), Critical loads for nitrogen (pp. 111-161). Sweden: Nordic Council of Ministers (Report 1992, 41. Report from a workshop held at Lökeberg (6–10 April 1992)).

    Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1996). Empirical nitrogen critical loads for natural and semi-natural ecosystems. In UNECE convention on long-range transboundary air pollution. Manual on methodologies and criteria for mapping critical loads/levels and geographical areas where they are exceeded. (1996). Umweltbundesambt, 71–96, Annex III. Berlin. 54 pp.

    Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    CAS  Google Scholar 

  • Bobbink, R., Ashmore, M., Braun, S., Flückiger, W., & van den Wyngaert, I. J. J. (2003). Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In B. Achermann & R. Bobbink (Eds.), Empirical critical loads for nitrogen (pp. 43–170). Berne: Swiss Agency for Environment, Forest and Landscape SAEFL.

    Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    CAS  Google Scholar 

  • Boeye, D., Verhagen, B., van Haesebroeck, V., & Verheyen, R. F. (1997). Nutrient limitation in species-rich lowland fens. Journal of Vegetation Science, 8, 415–424.

    Google Scholar 

  • Bonanomi, G., Caporaso, S., & Allegrezza, M. (2006). Short-term effects of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland. Acta Oecologica, 30, 419–425.

    Google Scholar 

  • Borken, W., & Matzner, E. (2004). Nitrate leaching in forest soils: An analysis of long-term monitoring sites in Germany. Zeitschrift fur Pflanzenernährung und Bodenkunde, 167, 277–283.

    CAS  Google Scholar 

  • Boxman, A. W., Krabbendam, H., Bellemakers, M. J. S., & Roelofs, J. G. M. (1991). Effects of ammonium and aluminium on the development and nutrition of Pinus nigra in hydroculture. Environmental Pollution, 73, 119–136.

    CAS  Google Scholar 

  • Boxman, A. W., van der Ven, P. J. M., & Roelofs, J. G. M. (1998). Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyn, The Netherlands. Forest Ecology and Management, 101, 155–163.

    Google Scholar 

  • Bragazza, L., Tahvanainen, T., Kutnar, L., Rydin, H., Limpens, J., Hàjek, M., Grosvernier, P., Hansen, I., Iacumin, P., & Gerdol, R. (2004). Nutritional constraints in ombrotrophic Sphagnum subject to increasing levels of atmospheric nitrogen deposition in Europe. New Phytologist, 163, 609–616.

    Google Scholar 

  • Bråkenhielm, S., & Quinghong, L. (1995). Spatial and temporal variability of algal and lichen epiphytes on trees in relation to pollutant deposition in Sweden. Water, Air & Soil Pollution, 79, 61–74.

    Google Scholar 

  • Braun, S., Thomas, V. F. D., Quiring, R., & Flückiger, W. (2010). Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, 2043–2052.

    CAS  Google Scholar 

  • Britton, A. J., & Fisher, J. M. (2007). Interactive effects of nitrogen deposition, fire, grazing on diversity and composition of low-alpine prostrate Calluna vulgaris heathland. Journal of Applied Ecology, 44, 125–135.

    CAS  Google Scholar 

  • Britton, A. J., & Fisher, J. M. (2008). Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management. Environmental Pollution, 153, 564–573.

    CAS  Google Scholar 

  • Brouwer, E., Bobbink, R., Roelofs, J. G. M., & Verheggen, G. M. (1996). Effectgerichte maatregelen tegen verzuring en eutrofiëring van oppervlaktewateren. Eindrapport monitoring tweede fase. Katholieke Universiteit Nijmegen: Vakgroep Oecologie.

    Google Scholar 

  • Brouwer, E., Bobbink, R., & Roelofs, J. G. M. (2002). Restoration of aquatic macrophyte vegetation in acidified and eutrophied softwater lakes: An overview. Aquatic Botany, 73, 405–431.

    CAS  Google Scholar 

  • Cape, J. N., Van der Eerden, L. J., Sheppard, L. J., Leith, I. D., & Sutton, M. A. (2009). Evidence for changing the critical level for ammonia. Environmental Pollution, 157, 1033–1037.

    CAS  Google Scholar 

  • Carroll, J. A., Caporn, S. J. M., Johnson, D., Morecroft, M. D., & Lee, J. A. (2003). The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands, receiving long-term inputs of stimulated pollutant nitrogen deposition. Environmental Pollution, 121, 363–376.

    CAS  Google Scholar 

  • Chen, Y., & Högberg, P. (2006). Gross nitrogen mineralization rates still high 14 years after suspension of N input to a N-saturated forest. Soil Biology and Biochemistry, 38, 2001–2003.

    CAS  Google Scholar 

  • Commission of the European Communities. (2003). Interpretation manual of European Union habitats—EUR 25. DG Environment—Nature and Biodiversity.

    Google Scholar 

  • Davies, C. E., & Moss, D. (2002). EUNIS habitat classification. 2001 Work programme, final report to the european environment agency European topic centre on nature protection and biodiversity. Centre for Ecology and Hydrology.

    Google Scholar 

  • Davies, C. E., Moss, D., & Hill, M. O. (2004). EUNIS habitat classification revised 2004. European Environment Agency, European topic centre on nature protection and biodiversity.

    Google Scholar 

  • De Graaf, M. C. C., Bobbink, R., Roelofs, J. G. M., & Verbeek, P. J. M. (1998). Differential effects of ammonium and nitrate on three heathland species. Plant Ecology, 135, 185–196.

    Google Scholar 

  • De Graaf, M. C. C., Bobbink, R., Smits, N. A. C., van Diggelen, R., & Roelofs, J. G. M. (2009). Biodiversity, vegetation gradients and key biogeochemical processes in the heathland landscape. Biological Conservation, 10, 2191–2201.

    Google Scholar 

  • Dias, T., Malveiro, S., Chaves, S., Tenreiro, R., Branquinho, C., Martins-Loução, M. A., Sheppard, L., & Cruz, C. (2011). Effects of increased N availability on biodiversity of Mediterranean-type ecosystems: A case study in a Natura 2000 site in Portugal. In W. K. Hicks, C.P. Whitfield, W.J. Bealey, & M.A. Sutton (Eds.), Nitrogen deposition and natura 2000: Science & practice in determining environmental impacts (pp. 171–180). Brussels. COST729/Nine/ESF/CCW/JNCC/SEI Workshop Proceedings. Cost Office 2011.

    Google Scholar 

  • Dirkse, G. M., & Van Dobben, H. F. (1989). Het effect van bemesting op de samenstelling van de kruidlaag van dennenbossen. Natura, 9, 208–212.

    Google Scholar 

  • Dirkse, G. M., & Martakis, G. F. P. (1992). Effects of fertilizer on bryophytes in Swedish experiments on forest fertilization. Biological Conservation, 59, 155–161.

    Google Scholar 

  • Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology Management, 71, 153–161.

    Google Scholar 

  • Dorland, E., Bobbink, R. & Robat, S. (2008). Impacts of changing ratios of reduced and oxidized nitrogen deposition: Case studies in acid grasslands and fen ecosystems. Proceedings 6th European Conference on Ecological Restoration, Ghent, Belgium. (8–12 September 2008).

    Google Scholar 

  • Dorland, E., Bobbink, R., Soons, M., & Rotthier, S. (2011). Dalende stikstofdepositie is nog niet afdoende voor herstel van droge heischrale graslanden. De Levende Natuur, 112, 220–224.

    Google Scholar 

  • Egloff, D. A. (1987). Food and growth relations of the marine microzooplankter, Synchaeta cecilia (Rotifera). Hydrobiologia, 157, 129–141.

    Google Scholar 

  • Ellenberg, H. (1988). Vegetation ecology of Central Europe. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ellenberg, H. (1996). Vegetation Mitteleuropas mit den Alpen (5th ed.). Stuttgart: Ulmer.

    Google Scholar 

  • Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835.

    CAS  Google Scholar 

  • Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual framework. Water, Air, & Soil Pollution: Focus, 7, 99–109.

    CAS  Google Scholar 

  • Emmett, B. A., Boxman, D., Bredemeier, M., Gundersen, P., Kjønaas, O. J., Moldan, F., Schleppi, P., Tietema, A., & Wright, R. F. (1998). Predicting the effects of atmospheric nitrogen deposition on conifer stand: Evidence from the NITREX ecosystem-scale experiments. Ecosystems, 1, 352–360.

    CAS  Google Scholar 

  • Falkengren-Grerup, U. (1986). Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia, 70, 339–347.

    Google Scholar 

  • Falkengren-Grerup, U. (1995). Long-term changes in flora and vegetation in deciduous forests of southern Sweden. Ecological Bulletins, 44, 215–226.

    CAS  Google Scholar 

  • Flückiger, W., & Braun, S. (2011). Auswirkung erhöhter Stickstoffbelastung auf die Stabilität des Waldes. (Synthesebericht). Schönenbuch: Institut für Angewandte Pflanzenbiologie.

    Google Scholar 

  • Gerdol, R., Petraglia, A., Bragazza, L., Iacumin, P., & Brancaleoni, L. (2007). Nitrogen deposition interacts with climate in affecting production and decomposition rate in Sphagnum mosses. Global Change Biology, 13, 1810–1821.

    Google Scholar 

  • Gimingham, C. H., Chapman, S. B., & Webb, N. R. (1979). European heathlands. In R. L. Specht (Ed.), Ecosystems of the world, 9A (pp. 365–386). Amsterdam: Elsevier.

    Google Scholar 

  • Goodale, C. L., Aber, J. D., Vitousek, P. M., & McDowell, W. H. (2005). Long-term decreases in stream nitrate: Successional causes unlikely; possible links to DOC? Ecosystems, 8, 334–337.

    CAS  Google Scholar 

  • Gordon, C., Wynn, J. M., & Woodin, S. J. (2001). Impacts of increased nitrogen supply on high Arctic heath: The importance of bryophytes and phosphorus availability. New Phytologist, 149, 461–471.

    CAS  Google Scholar 

  • Greipsson, S., & Davy, A. J. (1997). Responses of Leymus arenarius to nutrients: Improvement of seed production and seedling establishment for land reclamation. Journal of Applied Ecology, 34, 1165–1176.

    CAS  Google Scholar 

  • Grennfelt, P., & Thörnelöf, E. (1992). Critical loads for nitrogen. Copenhagen: Nord 1992:41 Nordic Council of Ministers.

    Google Scholar 

  • Gundersen, P., Callesen, I., & De Vries, W. (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution, 102, 403–407.

    CAS  Google Scholar 

  • Gunnarsson, U., Malmer, N., & Rydin, H. (2002). Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography, 25, 685–704.

    Google Scholar 

  • Hall, J., & Wadsworth, R. (2010). Estimating the effect of abiotic factors on modifying the sensitivity of vegetation to nitrogen deposition: An application of endorsement theory. Water, Air & Soil Pollution, 212, 441–459.

    CAS  Google Scholar 

  • Hall, J., Davies, C., & Moss, D. (2003). Harmonisation of ecosystem definitions using the EUNIS habitat classification. In B. Achermann & R. Bobbink (Eds.), Emperical critical loads for nitrogen—Proceedings expert workshop (pp. 171–195). Berne: Swiss Agency for Environment, Forest and Landscape SAEFL.

    Google Scholar 

  • Hettelingh, J.-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T., & Tarrasón, L. (2007). Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water, Air & Soil Pollution, 7, 379–384.

    CAS  Google Scholar 

  • Hofmann, G., Heinzdorf, D., & Krauß, H. H. (1990). Wirkung atmogener Stickstoffeinträge auf Produktivität und Stabilität von Kiefern-Forstökosystemen. Journal Beiträge für die Forstwirtschaft, 24, 59–73.

    Google Scholar 

  • Horswill, P., O’Sullivan, O., Phoenix, G. K., Lee, J. A., & Leake, J. R. (2008). Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336–349.

    CAS  Google Scholar 

  • ICP Modelling and Mapping. (2008). MINUTES of the 24th meeting of ICP M & M task force. http://www.rivm.nl/thema/images/icpmm_24tfm_minutes_final_tcm61-48579.pdf. Accessed 1 Nov 2013.

  • ICP Modelling and Mapping. (2009). MINUTES of the 25th meeting of ICP M & M task force. http://www.rivm.nl/thema/images/icpmm_25tfm_minutes_ultimatedraft_tcm61-48601.pdf. Accessed 1 Nov 2013.

  • Jones, M. L. M. (2005). Nitrogen deposition in upland grasslands: Critical loads, management and recovery. PhD Thesis, UK, University of Sheffield.

    Google Scholar 

  • Jones, M. L. M., Hayes, F., Brittain, S. A., Haria, S., Williams, P. D., Ashenden, T. W., Norris, D. A., & Reynolds, B. (2002). Changing nutrient budget of sand dunes: Consequences for the nature conservation interest and dune management. (CCW contract No. FC 73-01-347. Field survey). Bangor: Centre for Ecology and Hydrology.

    Google Scholar 

  • Jones, M. L. M., Wallace, H. L., Norris, D., Brittain, S. A., Haria, S., Jones, R. E., Rhind, P. M., Reynolds, B. R., & Emmett, B. A. (2004). Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biology, 6, 598–605.

    CAS  Google Scholar 

  • Kellner, O., & Redbo-Torstensson, P. (1995). Effects of elevated nitrogen deposition on the field layer vegetation in coniferous forests. In H. Staaf & G. Tyler (Eds.), Effects of acid deposition and troposhperic ozone on forest ecosystems in Sweden. Ecological Bulletins 44 (pp. 227–237).

    Google Scholar 

  • Kirkham, F. W., Mountford, J. O., & Wilkins, R. J. (1996). The effects of nitrogen, potassium and phosphorus addition on the vegetation of a Somerset peat moor under cutting management. Journal of Applied Ecology, 33, 1013–1029.

    Google Scholar 

  • Körner, C. (2003). Alpine plant life: Functional plant ecology of high mountain ecosystems. Heidelberg: Springer.

    Google Scholar 

  • Lamers, L. P. M., Bobbink, R., & Roelofs, J. G. M. (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583–586.

    Google Scholar 

  • Lammerts, E. J., & Grootjans, A. P. (1997). Nutrient deficiency in dune slack pioneer vegetation: A review. Journal of Coastal Conservation, 3, 87–94.

    Google Scholar 

  • Limpens, J., Berendse, F., & Klees, H. (2004). How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793–804.

    CAS  Google Scholar 

  • Løkke, H., Bak, J., Bobbink, R., Bull, K., Curtis, C., Falkengren-Grerup, U., Forsius, M., Gundersen, P., Hornung, M., Skjelkvåle, B. L., Starr, M., & Tybirk, K. (2000). Critical Loads Copenhagen 1999. Conference report prepared by members of the conference’s secretariat, the scientific committee and chairmen and rapporteurs of its workshops in consultation with the UNECE secretariat, Critical loads. Denmark: National Environmental Research Institute (21–25 November 1999).

    Google Scholar 

  • Lorenz, M., Becher, G., Mues, V., Fischer, R., Becker, R., Calatayud, V., Dise, N., Krause, G. H. M., Sanz, M., & Ulrich, E. (2005). Forest condition in Europe. (2005 technical report). Geneva: UNECE/EC.

    Google Scholar 

  • Malmer, N., Albinsson, C., Svensson, B., & Wallén, B. (2003). Interferences between Sphagnum and vascular plants: Effects on plant community structure and peat formation. Oikos, 100, 469–482.

    Google Scholar 

  • Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K., & Stevens, C. J. (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16, 671–679.

    Google Scholar 

  • Mitchell, R. J., Truscot, A. M., Leith, I. D., Cape, J. N., van Dijk, N., Tang, Y. S., Fowler, D., & Sutton, M. A. (2005). A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. Journal of Ecology, 93, 482–492.

    CAS  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. P. (2000). Wetlands (3rd ed.). New York: Wiley.

    Google Scholar 

  • Morecroft, M. D., Sellers, E. K., & Lee, J. A. (1994). An experimental investigation into the effects of atmospheric nitrogen deposition on two semi-natural grasslands. Journal of Ecology, 82, 475–483.

    CAS  Google Scholar 

  • Morris, J. T. (1991). Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. Annual Review of Ecology and Systematics, 22, 257–279.

    Google Scholar 

  • Moss, B. (1988). Ecology of fresh waters: Man and medium. Oxford: Blackwell.

    Google Scholar 

  • Mountford, M. O., Lakhani, K. H., & Holland, R. J. (1994). The effects of nitrogen on species diversity and agricultural production on the Somerset Moors, Phase II: (a) After seven years of fertilizer application; (b) after cessation of fertilizer input for three years. (Report to the institute for grassland and environmental research). Abbots Ripton. UK: Institute of Terrestrial Ecology.

    Google Scholar 

  • Nellemann, C., & Thomsen, M. G. (2001). Long-term changes in forest growth: Potential effects of nitrogen deposition and acidification. Water, Air, & Soil Pollution, 128, 197–205.

    CAS  Google Scholar 

  • Nordin, A., Strengbom, J., Witzell, J., Näsholm, T., & Ericson, L. (2005). Nitrogen deposition and the biodiversity of boreal forests: Implications for the nitrogen critical load. Ambio: A Journal of Human Environment, 34, 20–24.

    Google Scholar 

  • Nordin, A., Strengbom, J., & Ericson, L. (2006). Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environmental Pollution, 141, 167–174.

    CAS  Google Scholar 

  • Økland, R. H. (1995). Changes in the occurrence and abundance of plan species in a Norwegian boreal coniferous forest, 1988–1993. Nordic Journal of Botany, 15, 415–438.

    Google Scholar 

  • Olde Venterink, H., van der Vliet, R. E. & Wassen, M. J. (2001). Nutrient limitation along a productivity gradient in wet meadows. Plant and Soil, 234, 171–179.

    CAS  Google Scholar 

  • Olff, H., Huisman, J., & Van Tooren, B. F. (1993). Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. Journal of Ecology, 81, 693–706.

    Google Scholar 

  • Pardo, L. H., Fenn, M., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E., Baron, J., Bobbink, R., Bowman, W. D., Clark, C., Emmett, B., Gilliam, F. S., Greaver, T., Hall, S. J., Lilleskov, E. A., Liu, L., Lynch, J., Nadelhoffer, K., Perakis, S., Robin-Abbott, M. J., Stoddard, J., Weathers, K., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21, 3049–3082.

    Google Scholar 

  • Phoenix, G. K., Booth, R. E., Leake, J. R., Read, D. J., Grime, J. P., & Lee, J. A. (2003). Effects of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of semi-natural grasslands. Global Change Biology, 9, 1309–1321.

    Google Scholar 

  • Pilkington, M. G., Caporn, S. J. M., Carroll, J. A., Cresswell, N., Lee, J. A., Emmett, B. A., & Bagchi, R. (2007). Phosphorus supply influences heathland responses to atmospheric nitrogen deposition. Environmental Pollution, 148, 191–200.

    CAS  Google Scholar 

  • Pinho, P., August, S., Martins-Loução, M. A., Pereira, M. J., Soares, A., Máguas, C., & Branquinho, C. (2008). Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: Impact of land cover and atmospheric pollutants. Environmental Pollution, 154, 380–389.

    CAS  Google Scholar 

  • Pitcairn, C. E. R., Fowler, D., & Grace, J. (1991). Changes in species composition of semi-natural vegetation associated with the increase in atmospheric inputs of nitrogen. Penicuik: Institute of Terrestrial Ecology/NERC.

    Google Scholar 

  • Plassmann, K., Brown, N., Jones, M. L. M., & Edwards-Jones, G. (2008). Can atmospheric input of nitrogen affect seed bank dynamics in habitats of conservation interest? The case of dune slacks. Applied Vegetation Science, 11, 413–420.

    Google Scholar 

  • Plassmann, K., Edward-Jones, G., & Jones, M. L. M. (2009). The effects of low levels of nitrogen deposition and grazing on dune grassland. Science of Total Environent, 407, 1391–1404.

    CAS  Google Scholar 

  • Poikolainen, J., Lippo, H., Hongisto, M., Kubin, E., Mikkola, K., Lindgren, M., van der Hoek, K. W., Erisman, J. W., Smeulders, S. & Wisniewski, J. R. (1998). On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environmental Pollution, 102, 85–92.

    CAS  Google Scholar 

  • Redbo-Torstensson, P. (1994). The demographic consequences of nitrogen fertilization of a population of sundew, Drosera rotundifolia. Acta Botanica Neerlandica, 43, 175–188.

    Google Scholar 

  • Remke, E., Brouwer, E., Kooijman, A., Blindow, I. & Roelofs, J. G. M. (2009a). Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils. Ecosystems, 12, 1173–1188.

    CAS  Google Scholar 

  • Remke, E., Brouwer, E., Kooijman, A., Blindow, I., Esselink, H. & Roelofs, J. G. M. (2009b). Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environmental Pollution, 157, 792–800.

    CAS  Google Scholar 

  • Ritter, G. (1990). Zur Wirkung van Stickstoffeinträgen auf Feinwurzelsystem und Mykorrhizabildung in Kieferbeständen. Beitr fiir die Forstwirtsch, 24, 100–104.

    Google Scholar 

  • Roelofs, J. G. M. (1983). Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. I. Field observations. Aquatic Botany, 17, 139–155.

    CAS  Google Scholar 

  • Roelofs, J. G. M., Kempers, A. J., Houdijk, A. L. F. M. & Jansen, J. (1985). The effect of airborne ammonium sulphate on Pinus nigra var. maritima in the Netherlands. Plant and Soil, 84, 45–56.

    CAS  Google Scholar 

  • Saros, J. E., Michel, T. J., Interlandi, S. J., & Wolfe, A. P. (2005). Resource requirements of Asterionella Formosa and Fragilaria crotonsis in oligotrophic alpine lakes: Implications for recent phytoplankton community reorganisations. Canadian Journal of Fisheries and Aquatic Sciences, 62, 1681–1689.

    CAS  Google Scholar 

  • Sauter, U. (1991). Zeitliche Variationen des Ernährungszustands nordbayerischer Kiefernbestände. Forstwissenschaftliches Centralblatt, 110, 13–33.

    Google Scholar 

  • Schoof-van Pelt, M. M. (1973). Littorelletea, a study of the vegetation of some amphiphytic communities of western Europe. PhD thesis, Catholic University of Nijmegen.

    Google Scholar 

  • Schulze, E. D., Lange, O. L., & Oren, R. (Eds.). (1989). Forest decline and air pollution. New York: Springer Berlin Heidelberg.

    Google Scholar 

  • Schuurkes, J. A. A. R., Elbers, M. A., Gudden, J. J. F. & Roelofs, J. G. M. (1987). Effects of simulated ammonium sulphate and sulphuric acid rain on acidification, water quality and flora of small-scale soft water systems. Aquatic Botany, 28, 199–226.

    CAS  Google Scholar 

  • Sheppard, L. J., Leith, I. D., Crossley, A., van Dijk, N., Cape, J. N., Fowler, D., & Sutton, M. A. (2009). Long term cumulative exposure exacerbates the effects of atmospheric ammonia on an ombrothrophic bog: Implications for critical levels. In M. A. Sutton, S. Reis, & S. M. H. Baker (Eds.), Atmospheric ammonia—Detecting emission changes and environmental impacts. Penicuik: Springer Science.

    Google Scholar 

  • Spink, A., Sparks, R. E., van Oorschot, M. & Verhoeven, J. T. A. (1998). Nutrient dynamics of large river floodplains. Regulated Rivers: Research & Management, 14, 203–216.

    Google Scholar 

  • Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.

    CAS  Google Scholar 

  • Stevens, C. J., Duprè, C., Dorland, E., Gaudnik, C., Gowing, D. J. G., Bleeker, A., Diekmann, M., Alard, D., Bobbink, R., Fowler, D., Corcket, E., Mountford, J. O., Vandvik, V., Aarrestad, P. E., Muller, S., & Dise, N. B. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 158, 2940–2945.

    CAS  Google Scholar 

  • Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In L. A. Baker (Ed.), Environmental chemistry of lakes and reservoirs (pp. 223–284). Washington DC: American Chemical Society.

    Google Scholar 

  • Strengbom, J., Nordin, A., Näsholm, T., & Ericson, L. (2001). Slow recovery of boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, 451–457.

    Google Scholar 

  • Strengbom, J., Nordin, A., Näsholm, T., & Ericson, L. (2002). Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. Journal of Ecology, 90, 61–67.

    Google Scholar 

  • Strengbom, J., Walheim, M., Näsholm, T., & Ericson, L. (2003). Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests. Ambio: A Journal of Human Environment, 32, 91–97.

    Google Scholar 

  • Sutton, M. A., Reis, S., & Baker, S. M. H. (Eds.). (2009). Atmospheric ammonia—Detecting emission changes and environmental impacts. Penicuik: Springer Science.

    Google Scholar 

  • Tallowin, J. R., & Smith, R. E. N. (1994). The effects of inorganic fertilisers in flower-rich hay meadows on the Somerset Levels. English Nature Research Report 87. Peterborough: English Nature.

    Google Scholar 

  • Tamm, C. O. (1991). Nitrogen in terrestrial ecosystems. Questions of productivity, vegetational changes and ecosystem stability. Berlin: Springer.

    Google Scholar 

  • Thompson, D. B. A., & Baddeley, J. A. (1991). Some effects of acidic deposition on montane Racomitrium lanuginosum heaths. In S. J. Woodin & A.M. Farmer (Eds.), The effects of acid deposition on nature conservation in Great Britain (pp. 17–28). Cambridgeshire: NCC Peterborough.

    Google Scholar 

  • Tietema, A., Boxman, A. W., Bredemeier, M., Emmett, B. A., Moldan, F., Gundersen, P., Schleppi, P., Wright, R. F., van der Hoek, K. W., Erisman, J. W., Smeulders, S., & Wisniewski, J. R. (1998). Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: A summary of results. Environmental Pollution, 102, 433–437.

    CAS  Google Scholar 

  • Tomassen, H., Bobbink, R., Peters, R., van der Ven, P., & Roelofs, J. (1999). Kritische stikstofdepositie in heischrale graslanden, droge duingraslanden en hoogvenen: op weg naar meer zekerheid. Eindrapport in het kader van het Stikstof Onderzoek Programma (STOP), 1997–1999. Katholieke Universiteit Nijmegen en Universiteit Utrecht: Nijmegen & Utrecht.

    Google Scholar 

  • Tomassen, H. B. M., Smolders, A. J. P., Lamers, L. P. M., & Roelofs, J. G. M. (2003). Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: Role of high levels of atmospheric nitrogen deposition. Journal of Ecology, 91, 357–370.

    Google Scholar 

  • Tyler, G. (1987). Probable effects of soil acidification and nitrogen deposition on the floristic composition of oak (Quercus robur L.) forest. Flora, 179, 165–170.

    Google Scholar 

  • Ulrich, B. (1983). Soil acidity and its relations to acid deposition. In B. Ulrich & J. Pankrath (Eds.), Effects of accumulation of air pollutants in forest ecosystems (pp. 127–146). Dordrecht: Reidel Publ. Co.

    Google Scholar 

  • UNECE. (2006). The condition of forests in Europe. 2006 executive report. Hamburg: Federal Research Centre for Forests and Forest Products (BFH).

    Google Scholar 

  • UNECE. (2007). Recent results and updating of scientific and technical knowledge. Workshop on effects of low-level nitrogen deposition. (UN report ECE/EB.AIR/WG.1/2007/15).

    Google Scholar 

  • Van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology and Evolution, 10, 270–275.

    CAS  Google Scholar 

  • Van den Berg, L. J. L., Tomassen, H. B. M., Roelofs, J. G. M. & Bobbink, R. (2005). Effects of nitrogen enrichment on coastal dune grassland: A mesocosm study. Environmental Pollution, 138, 77–85.

    CAS  Google Scholar 

  • Van den Burg, J. (1990). Stickstoff- und Säuredeposition und die Nährstoffversorgung niederländischer Wälder auf pleistozänen Sandböden. Forst und Holzwirt, 45, 597–605.

    Google Scholar 

  • Van Dijk, H. F. G., & Roelofs, J. G. M. (1988). Effects of excessive ammonium deposition on the nutritional status and condition of pine needles. Physiologia Plantarum, 73, 494–501.

    CAS  Google Scholar 

  • Van Dobben, H. F., & van Hinsberg, A. (2008). Overzicht van kritische depositiewaarden voor stikstof, toegepast op habitattypen en Natura 2000 gebieden. (Alterra Report 1654). Wageningen: Alterra.

    Google Scholar 

  • Van Dobben, H. F., ter Braak, C. J. F., & Dirkse, G. M. (1999). Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecology and Management, 114, 83–95.

    Google Scholar 

  • Van Duren, I. C., Strykstra, R. J., Grootjans, A. P., ter Heerdt, G. N. J., & Pegtel, D. M. (1998). A multidisciplinary evaluation of restoration measures in a degraded Cirsio-Molinietum fen meadow. Applied Vegetation Science, 1, 115–130.

    Google Scholar 

  • Van Kootwijk, E. J., & van der Voet, H. (1989). De kartering van heidevergrassing in Nederland met de Landsat Thematic Mapper sattelietbeelden. (Report RIN 89/2). Dutch: Arnhem.

    Google Scholar 

  • Van Wijnen, H. J., van der Wal, R., & Bakker, J. P. (1999). The impact of herbivores on nitrogen mineralization rate: Consequences for salt-marsh succession. Oecologia, 118, 225–231.

    Google Scholar 

  • Vermeer, J. G. (1986). The effects of nutrients on shoot biomass and species composition of wetland and hayfield communities. Acta Oecologica/Oecologia Plantarum, 7, 31–41.

    Google Scholar 

  • Wallenda, T., & Kottke, I. (1998). Nitrogen deposition and ectomycorrhizas. New Phytologist, 139, 169–187.

    CAS  Google Scholar 

  • Wassen, M. J., van der Vliet, R. E. & Verhoeven, J. T. A. (1998). Nutrient limitation in the Biebrza fens and floodplain (Poland). Acta Botanica Neerlandica, 47, 241–253.

    Google Scholar 

  • WGE. (2009). Report of the working group on effects on its twenty-eighth session. http://www.unece.org/env/documents/2009/EB/wge/ece.eb.air.wg.1.2009.2.e.pdf. Accessed 1 Nov 2013.

  • WHO. (2001). Air Quality guidelines for Europe. Copenhagen: WHO Regional Publications (European Series, No. 91).

    Google Scholar 

  • Wittig, R., & Pott, R. (1982). Verbreitung der Littorelletea-Arten in der Westfälischen Bucht. Decheniana, 135, 14–21.

    Google Scholar 

  • Wolfe, A. P., Cooke, C. A., & Hobbs, W. O. (2006). Are current rates of atmospheric Nitrogen deposition influencing lakes in the eastern Canadian Arctic? Arctic Antarctic, and Alpine Research, 38, 465–476.

    Google Scholar 

  • Wright, R. F., Alewell, C., Cullen, J. M., Evans, C. D., Marchetto, A., Moldan, F., Prechtel, A., & Rogora, M. (2001). Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrological and Earth Systems Science, 5, 299–310.

    Google Scholar 

  • Wright, R. F., Aherne, J., Bishop, K., Camarero, L., Cosby, B. J., Erlandsson, M., Evans, C. D., Forsius, M., Hardekopf, D. W., Helliwell, R., Hruska, J., Jenkins, A., Kopacek, J., Moldan, F., Posch, M., & Rogora, M. (2006). Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual processes in the MAGIC model. Science of Total Environment, 365, 154–166.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Bobbink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bobbink, R. et al. (2015). Effects and Empirical Critical Loads of Nitrogen for Europe. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_4

Download citation

Publish with us

Policies and ethics