Skip to main content

Electromagnetic Radiation and Health: Human Indicators

  • Chapter
  • First Online:
Environmental Indicators

Abstract

Manmade electromagnetic radiation increases in the environment as new applications are frequently adopted. Humans serve as receiving antennas for electromagnetic waves. Thus various new responses can be expected. In addition to radio and television programs, mobile telephony, distant reading of electricity and water consumption and many other technologies load us electrically and magnetically both out- and indoors. Most exposures are active all the time, day and night, continuously or in regular pulses. Personal devices are also important sources, since they touch the skin and are held near the brain and heart. Humans are good bioindicators, as their physiological parameters, such as heart function and blood biochemistry, are frequently recorded. Data storage and analysis are getting better. Humans also report symptoms that cannot be directly measured, and carry valuable information on bioeffects. Studies from recent decades have shown that exposure to electromagnetic waves can break DNA chains, damage proteins, even increase the blood brain barrier permeability, disturb sleep, and cause fatigue, memory and concentration problems. Neural, hormonal and psychosocial development is affected. An increase in human brain tumours has been described in correlation with mobile phone use on the exposed side of the head. The symptoms of electrohypersensitivity cause morbidity, but the interaction between multiple radiation frequencies and the mechanisms leading to frequency sensitivity are still poorly understood. Producers of mobile communication devices continuously warn users not to keep personal devices in skin contact. The Precautionary Principle that has been signed by many nations applies to all environmental risk factors, including exposure to electromagnetic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adey WR (1981) Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61:435–514

    CAS  Google Scholar 

  • Adey WR (1986) Electromagnetic fields, cell membrane amplification and cancer promotion. Technical report, presented at the National Council on Radiation Protection and Measurements’ annual meeting. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R (2009) Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril 92(4):1318–1325

    Article  Google Scholar 

  • Ahuja YR, Vijayashree B, Saran R, Jayashri EL, Manoranjani JK, Bhargava SC (1999) In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J Biochem Biophys 36(5):318–322

    CAS  Google Scholar 

  • Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA (2006) Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab 91:4154–4163

    Article  CAS  Google Scholar 

  • Allen PD, St Pierre TG, Chua-Anursorn W, Ström V, Rao KV (2000) Low-frequency low-field magnetic susceptibility of ferritin and hemosiderin. Biochim Biophys Acta 1500:186–196

    Article  CAS  Google Scholar 

  • Armadillo E, Bozzo E, Gambetta M, Rizzello D (2012) Impact of human activities on the geomagnetic field of Antarctica: a high resolution aeromagnetic survey over Mario Zucchelli Station. Environ Int 47:1–7

    Article  CAS  Google Scholar 

  • Atzmon I, Linn S, Richter E, Portnov BA (2012) Cancer risks in the Druze Village: reasons and RF/MW antennas. Pathophysiology 19:21–28

    Article  Google Scholar 

  • Bawin SM, Kaczmarek LK, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. Ann N Y Acad Sci 247:74–81

    Article  CAS  Google Scholar 

  • Beard BB, Kainz W (2004) Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models. BioMedical Engineering Online. http://www.biomedcentral.com/content/pdf/1475-925x-3-34.pdf. Accessed 8 Dec 2010

  • Bioinitiative (2012) A rational for a biologically-based public exposure standard for electromagnetic fields (ELF and RF). http://www.bioinitiative.org. Accessed 20 Feb 2014

  • Blank M (ed) (2009) Special issue electromagnetic fields (EMF). Pathophysiology 16(2–3):67–249

    Google Scholar 

  • Blank M, Goodman R (2009) Electromagnetic fields stress living cells. Pathophysiology 16(2–3):71–78

    Article  Google Scholar 

  • Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1999) Reduced excretion of a melatonin metabolite among workers exposed to 60 Hz magnetic fields. Am J Epidemiol 150(1):27–36

    Article  CAS  Google Scholar 

  • Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, Musumeci F, Vanella A, Triglia A (2010) Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett 473(1):52–55

    Article  CAS  Google Scholar 

  • Carstensen EL (1987) Biological effects of transmission lines fields. Elsevier Publishing Company, New York

    Google Scholar 

  • Cespedes O, Ueno S (2009) Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics 30:336–342

    Article  CAS  Google Scholar 

  • Chan K, Cleveland Jr RF, Means DL (1997) Federal Communications Commission, Office of Engineering & Technology. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields supplement C (Edition 97–01) to OET Bulletin 65 (Edition 97–01) Federal Communications Commission, Washington, DC

    Google Scholar 

  • Cohen MM, Kunska A, Astemborski JA, McCulloch D (1986) The effect of low-level 60-Hz electromagnetic fields on human lymphoid cells. II. Sister-chromatid exchanges in peripheral lymphocytes and lymphoblastoid cell lines. Mutat Res 172(2):177–184

    Article  CAS  Google Scholar 

  • Cook HJ, Steneck NH, Vander AJ, Kane GL (1980) Early research on the biological effects of microwave radiation: 1940–1960. Ann Sci 37:323–351

    Article  CAS  Google Scholar 

  • Czerninski R, Zini A, Sgan-Cohen HD (2011) Risk of parotid malignant tumors in Israel (1970–2006). Epidemiology 22(1):130–131

    Article  Google Scholar 

  • D’Andrea JA, Gandhi OP, Kesner RP (1975) Behavioral effects of resonant electromagnetic power deposition in rats (Selected papers of the 1975 USNC/URSI meeting, Boulder). Biological effects of electromagnetic waves HEW publication (FDA) 778011, I:257–273

    Google Scholar 

  • Dasdag S, Ketani MA, Akdag Z, Ersay AR, Sari I, Demirtas OC, Celik MS (1999) Whole body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res 27(3):219–223

    Article  CAS  Google Scholar 

  • Davis D (2010) Disconnect. Dutton, Penguin Group (USA) Inc., New York

    Google Scholar 

  • Davoudi M, Brossner C, Kuber W (2002) Der einfluss elektromagnetischer wellen auf die spermienmotilität [The influence of electromagnetic waves on sperm motility]. Journal für Urologie und Urogynäkologie 19:18–22

    Google Scholar 

  • De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4(7):e6446

    Article  Google Scholar 

  • Degrave E, Autier P, Grivegnée AR, Zizi M (2005) All-cause mortality among Belgian military radar operators: a 40-year controlled longitudinal study. Eur J Epidemiol 20:677–681

    Article  Google Scholar 

  • Degrave E, Meeusen B, Grivegnée AR, Boniol M, Autier P (2009) Causes of death among Belgian professional military radar operators: a 37-year retrospective cohort study. Int J Cancer 124:945–951

    Article  CAS  Google Scholar 

  • Drews FA, Straye DL (2004) Profiles in driver distraction: effects of cell phone conversation on young and older drivers. Hum Factors 46:640–649

    Article  Google Scholar 

  • Duan Y, Zhang HZ, Bu RF (2011) Correlation between cellular phone use and epithelial parotid gland malignancies. Int J Oral Maxillofac Surg 40(9):966–972

    Article  CAS  Google Scholar 

  • Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, Komesli G, Irkilata HC, Irmak MK, Peker AF (2006) Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res 37(7):840–843

    Article  Google Scholar 

  • Feldman Y, Puzenko A, Ben Ishai P, Caduff A, Agranat AJ (2008) Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Phys Rev Lett 100:128102

    Article  Google Scholar 

  • Feldman Y, Puzenko A, Ben Ishai P, Caduff A, Davidovich I, Sakran F, Agranat AJ (2009) The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys Med Biol 54(11):3341–3363

    Article  Google Scholar 

  • Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R (2007) Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 405(3):559–568

    Article  CAS  Google Scholar 

  • Gandhi OP, Kang G (2001) Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices. Phys Med Biol 46(11):2759–2771

    Article  CAS  Google Scholar 

  • Gandhi OP (2002) Electromagnetic fields: human safety issues. Annu Rev Biomed Eng 4:211–234

    Article  CAS  Google Scholar 

  • Gandhi OP, Morgan L, de Salles AA, Han YY, Herberman RB, Davis DL (2011) Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med, Early Online 1–18

    Google Scholar 

  • Glaser ZR (1972) Bibliography of reported biological phenomena (‘effects’) and clinical manifestations attributed to microwave and radio-frequency radiation. Naval Medical Research Institute MF12.54.015-004B, Report No. 2, revised

    Google Scholar 

  • Goldsmith JR (1995) Epidemiologic evidence of radiofrequency radiation (microwave) effects on health in military, broadcasting, and occupational studies. Int J Occup Environ Health 1(1):47–57

    Article  Google Scholar 

  • Goldsmith JR (1997) Epidemiologic evidence relevant to radar (microwave) effects. Env Health Perspect 105(suppl 6):1579–1587

    Article  Google Scholar 

  • Gordon CC, Churchill T, Clauser CE, Bradtmiller B, McConville JT (1989) Anthropometric survey of U.S. army personnel: methods and summary statistics. Technical report NATICK/TR-89/044.U.S. Army Natick Research, Development and Engineering Center, Natick

    Google Scholar 

  • Grayson JK, Lyons TJ (1996) Brain cancer, flying and socioeconomic status: a nested case–control study of USAF aircrew. Aviat Space Environ Med 67(12):1152–1154

    CAS  Google Scholar 

  • Groves FD, Page WF, Gridley G, Lisimaque L, Stewart PA, Tarone RE, Gail MH, Boice JD Jr, Beebe GW (2002) Cancer in Korean War navy technicians: mortality survey after 40 years. Am J Epidemiol 1355:810–818

    Google Scholar 

  • Gul A, Celebi H, Ugras S (2009) The effects of microwave emitted by cellular phones on ovarian follicles in rats. Arch Gynecol Obstet 280(5):729–733

    Google Scholar 

  • Hagström M, Auranen J, Ekman R (2013) Electromagnetic hypersensitive Finns: symptoms, perceived sources and treatments, a questionnaire study. Pathophysiology 20(2):117–122

    Article  Google Scholar 

  • Hallberg Ö, Johansson O (2009) Apparent decreases in Swedish public health indicators after 1997- are they due to improved diagnostics or to environmental factors? Pathophysiology 16(2–3):23–26

    Google Scholar 

  • Hänninen O, Kinnunen S, Nilsson M, Tuormaa E, Kassinen A (2007) Matkapuhelinteknologia – Mitkä ovat terveysriskit? In: Tamminen E (ed) Mobile technology–what are the health risks? House Protector/EMF Books, Järvenpää

    Google Scholar 

  • Hänninen O, Huttunen P, Ekman R (2011) Electromagnetic irradiation exposure and its bioindication – an overview. J Environ Sci 23(9):1409–1414

    Article  Google Scholar 

  • Hänninen O, Kolmakow S, Ekman R, Huttunen P (2013) Cardiovascular responses to electromagnetic radiation. J Afr Assoc Physiol Sci 1(1):17–22

    Google Scholar 

  • Hardell H, Carlberg M, Hansson Mild K (2010) Mobile phone use and the risk for malignant brain tumors: a case–control study on deceased case and controls. Neuroepidemiology 35:109–114

    Article  Google Scholar 

  • Hardell L, Carlberg M, Söderqvist F, Mild KH (2013) Case-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol 43(6):1833–1845

    Google Scholar 

  • Havas M (2006) Electromagnetic hypersensitivity: biological effects of dirty electricity with emphasis on diabetes and multiple sclerosis. Electromagn Biol Med 25(4):259–268

    Article  Google Scholar 

  • Huang Ti Nei Ching Su Wen (1992) The Yellow Emperor’s classic of internal medicine. Front Cover, Pelanduk Pub (trans: Veith I) Chinese, 260 pp. Originally written some 2400 years ago

    Google Scholar 

  • Huss A, Spoerri A, Egger M, Roosli M (2009) Residence near power lines and mortality from neurodegenerative diseases: longitudinal study of the Swiss population. Am J Epidemiol 169(2):167

    Article  Google Scholar 

  • Hutter HP, Moshammer H, Wallner P, Kundi M (2006) Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup Env Med 63:307–313

    Article  Google Scholar 

  • Huttunen P, Hänninen O, Myllylä R (2009) FM-radio and TV tower signals can cause spontaneous hand movements near moving RF reflector. Pathophysiology 16(2–3):201–204

    Article  Google Scholar 

  • Huttunen P, Savinainen A, Hänninen O, Myllylä R (2011) Involuntary human hand movements due to FM radio waves in moving van. Acta Physiol Hung 98(2):151–164

    Article  Google Scholar 

  • INTERPHONE Study Group (2011) Acoustic neuroma risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Cancer Epidemiol 35(5):453–464

    Article  Google Scholar 

  • Johansson O (2009) The London resolution. Pathophysiology 16(2–3):247–248

    Google Scholar 

  • Justesen D, Guy A, Opschuk J et al (1978) Research on health effects of nonionizing radiation. United States house of representatives: hearing committee on science and technology, 12 July 1978. No. 52-3620, pp 356–366

    Google Scholar 

  • Kirschvink JL, Kobayashi-Kischvink A, Diaz-Ricci JC, Kirschvink SJ (1992) Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics Suppl 1:101–113

    Article  CAS  Google Scholar 

  • Marino AA, Nilsen E, Frilot C (2003) Nonlinear changes in brain electrical activity due to cell phone radiation. Bioelectromagnetics 24:339–346

    Article  Google Scholar 

  • Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R (2009) Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo) 64(6):561–565

    Article  Google Scholar 

  • McEvoy SP, Stevenson MR, Woodward M (2006) Phone use and crushes while driving: a representative survey of drivers in two Australian states. Med J Aust 185(11–12):628–629

    Google Scholar 

  • Milham S (2010) Dirty electricity: electrification and the diseases of civilization. iUniverse, Bloomington

    Google Scholar 

  • Moustafa Y, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM (2001) Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 26:605–608

    Article  CAS  Google Scholar 

  • Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BRR, Salford LG (2009) Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16(2–3):103–112

    Article  CAS  Google Scholar 

  • Nylund R, Kuster N, Leszsynski D (2010) Analysis of proteome response to the mobile phone radiation in types of human primary endothelial cells. Proteome Sci 18(8):52

    Article  Google Scholar 

  • Phillips JL, Singh NP, Lai H (2009) Electromagnetic fields and DNA damage. Pathophysiology 16(2–3):79–88

    Article  CAS  Google Scholar 

  • Portelli LA, Schomay TE, Barnes FS (2013) Inhomogeneous background magnetic field in biological incubators is a potential confounder for experimental variability and reproducibility. Bioelectromagnetics 34(5):337–348. doi:10.1002/bem.21787

    Article  Google Scholar 

  • Rea WJ, Pan Y, Fenyves EJ, Sujisawa I, Suyama H, Samadi N, Ross GH (1991) Electromagnetic field sensitivity. J Bioelectric 10(1&2):241–256

    Google Scholar 

  • Regel SJ, Tinguely G, Schuderer J, Adam M, Kuster N, Landolt HP, Achermann P (2006) Pulsed radio-frequency electromagnetic fields: dose-dependent effects on sleep, the sleep EEG and cognitive performance. J Sleep Res 15(s1):171

    Google Scholar 

  • Regel SJ, Gottselig JM, Schuderer J, Tinguely G, R’etey JV, Kuster N, Landolt HP, Achermann P (2007) Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram. Neuroreport 18(8):803–807

    Article  Google Scholar 

  • Richter ED, Berman T, Ben-Michael E, Laster R, Westin JB (2000) Cancer in radar technicians exposed to RF/MW: sentinel episodes. Int J Occup Environ Health 75:187–193

    Article  Google Scholar 

  • Richter ED, Berman T, Levy O (2002) Brain cancer with induction periods of less than 10 years in young military radar workers. Arch Env Health 57(4):270–272

    Article  Google Scholar 

  • Robinette CD, Silverman C, Jablon S (1980) Effects upon health of occupational exposure to microwave radiation (radar). Am J Epidemiol 112(1):39–53

    CAS  Google Scholar 

  • Ruediger HW (2009) Genotoxic effects of radio frequency electromagnetic fields. Pathophysiology 16(2–3):89–102

    Article  CAS  Google Scholar 

  • Russel PJ, Wolfe SL, Herz PE, Starr C, McMillan B (2008) Biology, the dynamic science. Thompson Brooks/Cole, Belmont, pp 904–906

    Google Scholar 

  • Safrai E, Ben Ishai P, Caduff A, Puzenko A, Polsman A, Agranat AJ, Feldman Y (2012) The remote sensing of mental stress from the electromagnetic reflection coefficient of human skin in the sub-THz range. Bioelectromagnetics 33(5):375–382

    Article  Google Scholar 

  • Stein Y, Levy-Nativ O, Richter ED (2011) A sentinel case series of cancer patients with occupational exposure to electromagnetic non-ionizing radiation. Eur J Oncol 16(1):21–54

    Google Scholar 

  • Steneck NH, Cook HJ, Vander AJ, Kane GL (1980) The origins of U.S. safety standards for microwave radiation. Science 208:1230–1237

    Article  CAS  Google Scholar 

  • Szmigielski S (1996) Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci Total Environ 180:9–17

    Article  CAS  Google Scholar 

  • Szmigielski S, Sobiczewska E, Kubacki R (2001) Carcinogenic potency of microwave radiation: overview of the problem and results of epidemiological studies on Polish military personnel. Eur J Oncol 6(2):193–199

    Google Scholar 

  • Veith I (2002) The Yellow Emperor’s classic of internal medicine. University of California Press, Berkley/Los Angeles

    Google Scholar 

  • Volkow ND, Tomasi D, Wange GJ, Vaska P, Fowler JS, Teland F, Alexoff D, Logan Wong C (2011) Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA 305:808–814

    Article  CAS  Google Scholar 

  • Wdowiak AL, Wdowiak LH, Wiktor H (2007) Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med 14(1):169–172

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Environmental Health Trust, a non-profit and policy organization, and by the Yael Piton fund for support of research in Environmental Studies.

The occupational data was collected together with Prof. Richter from the Unit of Occupational and Environmental Medicine, Hebrew University – Hadassah School of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osmo Hänninen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stein, Y., Hänninen, O., Huttunen, P., Ahonen, M., Ekman, R. (2015). Electromagnetic Radiation and Health: Human Indicators. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9499-2_57

Download citation

Publish with us

Policies and ethics