Biological Indicators of Ionizing Radiation in Nature

  • Anders Pape MøllerEmail author
  • Timothy Alexander Mousseau


Ionizing radiation that consists of α, β and γ rays can directly damage DNA and other molecules and as such result in somatic or germline mutations. The consequences of ionizing radiation for living beings cannot be measured with a Geiger counter because it will depend on external dose, internal dose, and the extent of DNA repair. In addition it will depend on the environmental conditions under which living organisms exist. We list environmental indicators of ionizing condition that reveal immediate and long-term consequences ranging from changes in DNA, over damaged cells and organs to altered gene function and development, reduced fecundity and survival, and hence to negative population trends, and altered communities and ecosystems and perturbed ecosystem functioning. We test for consistency in biological indicator ability across spatial and temporal scales relying on long-term field data collected at Chernobyl and Fukushima, and we test for consistency in indicator ability among indicators. Finally, we address the direct and indirect effects of ionizing radiation and we discuss the species or taxa most susceptible to the effects of radiation.


Biological level of organization Consistency across indicators Direct vs. indirect effects of radiation Environmental indicators Spatial consistency Temporal consistency 


  1. Bibby CJ, Hill DA, Burgess ND, Mustoe S (2005) Bird census techniques. Academic, LondonGoogle Scholar
  2. Bonisoli-Alquati A, Voris A, Mousseau TA, Møller AP, Saino N, Wyatt M (2010) DNA damage in barn swallows (Hirundo rustica) from the Chernobyl region detected by use of the Comet assay. Comp Biochem Physiol C 151:271–277Google Scholar
  3. Bonisoli-Alquati A, Møller AP, Rudolfsen G, Saino N, Caprioli M, Ostermiller S, Mousseau TA (2011) The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica). J Comp Physiol B 159:105–112Google Scholar
  4. Boubriak II, Grozinsky DM, Polischuk VP, Naumenko VD, Guschcha NP, Micheev AN, McCready SJ, Osborne DJ (2008) Mutation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl. Ann Bot 101:267–276CrossRefGoogle Scholar
  5. Danchenko M, Skultety L, Rashydov NM, Berezhna VV, Mátel L, Salaj T, Pret’ová A, Hajduch M (2009) Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. J Proteome Res 8:2915–2922CrossRefGoogle Scholar
  6. Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683–686CrossRefGoogle Scholar
  7. Ellegren H, Lindgren G, Primmer CR, Møller AP (1997) Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–596CrossRefGoogle Scholar
  8. Forster L, Forster P, Lutz-Bonengel S, Willkomm H, Brinkmann B (2002) Natural radioactivity and human mitochondrial DNA mutations. Proc Natl Acad Sci U S A 99:13950–13954CrossRefGoogle Scholar
  9. Galván I, Mousseau TA, Møller AP (2011) Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based colouration. Oecologia 165:827–835CrossRefGoogle Scholar
  10. Garnier-Laplace J, Geras’kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A (2012) Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact 121:12–21CrossRefGoogle Scholar
  11. Hiyama A, Nohara C, Kinjo S, Taira W, Gima S, Tanahara A, Otaki JM (2012) The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Nat Sci Rep 2:570Google Scholar
  12. Klubicová K, Danchenko M, Skultety L, Miernyk JA, Rashydov NM, Berezhna VV, Pret’ová A, Hajduch M (2010) Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. Environ Sci Technol 44:6940–6946CrossRefGoogle Scholar
  13. Kordium EL, Sidorenko PG (1997) The results of the cytogenetic monitoring of the species of angiosperm plants growing in the area of the radionuclide contamination after the accident at the Chernobyl Atomic Electric Power Station. Tsitol Genet 31:39–46 (in Russian)Google Scholar
  14. Lehman AR (2006) DNA repair. Elsevier, AmsterdamGoogle Scholar
  15. Lelieveld J, Kunkel D, Lawrence MG (2012) Global risk of radioactive fallout after major nuclear reactor accidents. Atmos Chem Phys 12:4245–4258CrossRefGoogle Scholar
  16. Lubin J, Boice J Jr (1997) Lung cancer risk from residential radon: meta-analysis of eight epidemiologic studies. J Natl Cancer Inst 89:49–57CrossRefGoogle Scholar
  17. Møller AP (1993) Morphology and sexual selection in the barn swallow Hirundo rustica in Chernobyl, Ukraine. Proc R Soc Lond B Biol Sci 252:51–57CrossRefGoogle Scholar
  18. Møller AP (1998) Developmental instability of plants and radiation from Chernobyl. Oikos 81:444–448CrossRefGoogle Scholar
  19. Møller AP (2012) The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol Rev 88:226–254CrossRefGoogle Scholar
  20. Møller AP, Mousseau TA (2001) Albinism and phenotype of barn swallows Hirundo rustica from Chernobyl. Evolution 55:2097–2104CrossRefGoogle Scholar
  21. Møller AP, Mousseau TA (2003) Mutation and sexual selection: a test using barn swallows from Chernobyl. Evolution 57:2139–2146CrossRefGoogle Scholar
  22. Møller AP, Surai PF, Mousseau TA (2005) Antioxidants, radiation and mutation in barn swallows from Chernobyl. Proc R Soc Lond B 272:247–253CrossRefGoogle Scholar
  23. Møller AP, Mousseau TA (2006) Biological consequences of Chernobyl: 20 years after the disaster. Trends Ecol Evol 21:200–207CrossRefGoogle Scholar
  24. Møller AP, Mousseau TA (2007a) Determinants of interspecific variation in population declines of birds from exposure to radiation at Chernobyl. J Appl Ecol 44:909–919CrossRefGoogle Scholar
  25. Møller AP, Mousseau TA (2007b) Birds prefer to breed in sites with low radioactivity in Chernobyl. Proc R Soc Lond B Biol Sci 274:1443–1448CrossRefGoogle Scholar
  26. Møller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G (2008) Impaired swimming behavior and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat Res 650:210–216CrossRefGoogle Scholar
  27. Møller AP, Mousseau TA (2009) Reduced abundance of raptors in radioactively contaminated areas near Chernobyl. J Ornithol 150:239–246CrossRefGoogle Scholar
  28. Møller AP, Mousseau TA (2011a) Efficiency of bio-indicators for low-level radiation under field conditions. Ecol Indic 11:424–430CrossRefGoogle Scholar
  29. Møller AP, Mousseau TA (2011b) Conservation consequences of Chernobyl and other nuclear accidents. Biol Conserv 114:2787–2798CrossRefGoogle Scholar
  30. Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2012) Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios. PLoS One 7(4):e35223CrossRefGoogle Scholar
  31. Møller AP, Mousseau TA (2013) Assessing effects of radiation on abundance of mammals and predator-prey interactions in Chernobyl using tracks in the snow. Ecol Indic 26:112–116CrossRefGoogle Scholar
  32. Møller AP, Mousseau TA, Milinevsky G, Peklo A, Pysanets E, Szép T (2005a) Condition, reproduction and survival of barn swallows from Chernobyl. J Anim Ecol 74:1102–1111CrossRefGoogle Scholar
  33. Møller AP, Surai PF, Mousseau TA (2005b) Antioxidants, radiation and mutation in barn swallows from Chernobyl. Proc R Soc Lond B 272:247–253CrossRefGoogle Scholar
  34. Møller AP, Hobson KA, Mousseau TA, Peklo AM (2006) Chernobyl as a population sink for barn swallows: tracking dispersal using stable isotope profiles. Ecol Appl 16:1696–1705CrossRefGoogle Scholar
  35. Møller AP, Mousseau TA, de Lope F, Saino N (2007) Elevated frequency of abnormalities in barn swallows from Chernobyl. Biol Lett 3:414–417CrossRefGoogle Scholar
  36. Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2011) Chernobyl birds have smaller brains. PLoS One 6(2):e16862CrossRefGoogle Scholar
  37. Møller AP, Bonisoli-Alquati A, Mousseau TA (2013a) High frequency of albinism and tumors in free-living birds at Chernobyl. Mutation Res 757:52–59Google Scholar
  38. Møller AP, Nishiumi I, Suzuki H, Ueda K, Mousseau TA (2013b) Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecol Indic 14:75–81CrossRefGoogle Scholar
  39. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL (1996) Genomic instability induced by ionizing radiation. Radiat Res 146:247–258CrossRefGoogle Scholar
  40. Mousseau TA, M½ller AP (2013) Elevated frequencies of cataracts in birds from Chernobyl. PLoS One 8(7):e66939Google Scholar
  41. Muller HJ (1954) The manner of production of mutations by radiation. In: Hollaender A (ed) Radiation biology, vol 1, High energy radiation. McGraw-Hill, New York, pp 475–626Google Scholar
  42. Nadson GA, Philippov GS (1925) Influence des rayons x sur la sexualité et la formation des mutantes chez les champignons inferieurs (Mucorinées). C R Soc Biol Filiales 93:473–474Google Scholar
  43. Ragon M, Restoux G, Moreira D, Møller AP, López-García P (2011) Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels. PLoS One 6(7):e21764CrossRefGoogle Scholar
  44. Serdiuk A, Bebeshko V, Bazyka D, Yamashita S (eds) (2011) Health effects of the Chornobyl accident: a quarter of century aftermath. DIA, KievGoogle Scholar
  45. von Sonntag C (2010) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, BerlinGoogle Scholar
  46. Yablokov AV, Nesterenko VB, Nesterenko AV (2009) Chernobyl: consequences of the catastrophe for people and nature. New York Academy of Sciences, New YorkGoogle Scholar
  47. Zakharov VM, Krysanov EY (eds) (1996) Consequences of the Chernobyl catastrophe: environmental health. Center for Russian Environmental Policy, MoscowGoogle Scholar
  48. Zhang ZL, Sun J, Dong JY, Tian HL, Xue L, Qin LQ, Tong J (2012) Residential radon and lung cancer risk: an updated meta-analysis of case-control studies. Asian Pac J Cancer Prev 13:2459–2465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Anders Pape Møller
    • 1
    Email author
  • Timothy Alexander Mousseau
    • 2
  1. 1.Laboratoire d’Ecologie, Systématique et Evolution, CNRS UMR 8079Université Paris-SudOrsay CedexFrance
  2. 2.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations