Skip to main content

Ethylene Biosynthesis and Regulation in Plants

  • Chapter
  • First Online:
Ethylene in Plants

Abstract

Ethylene, a gaseous plant hormone, influences plant growth, development, and response to various stresses and pathogen infection. Ethylene is synthesized from S-adenosylmethionine (SAM) via 1-aminocyclopropane-1-carboxylic acid (ACC). In plants, ACC synthase (ACS) and ACC oxidase (ACO), two key enzymes in the ethylene biosynthetic pathway, are tightly regulated both transcriptionally and posttranscriptionally to modulate ethylene biosynthesis. This chapter summarizes the ethylene biosynthetic pathway and its regulation in higher plants, with a particular focus on the regulation of ACS, generally the rate-limiting enzyme of ethylene biosynthesis. Increasing evidence demonstrates that stability and turnover of the ACS protein is tightly regulated by phosphorylation, dephosphorylation, and ubiquitination-mediated proteasomal degradation. Together with the spatiotemporal-specific expression of the ACS gene family, multilevel regulation of cellular ACS activity can fine-tune the kinetics and magnitude of ethylene biosynthesis in response to diverse endogenous and environmental cues, which is critical to ethylene physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acaster MA, Kende H. Properties and partial purification of 1-aminocyclopropane-1-carboxylate synthase. Plant Physiol. 1983;72(1):139–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adams DO, Yang SF. Methionine metabolism in apple tissue implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 1977;60(6):892–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adams DO, Yang SF. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA. 1979;76(1):170–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Agnieszka L, Agata C, Anna K-M, et al. Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Mol Plant. 2014;7(6):960–76.

    Google Scholar 

  • Alba R, Payton P, Fei Z, et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 2005;17(11):2954–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alexander FW, Sandmeier E, Mehta PK, et al. Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Eur J Biochem. 1994;219(3):953–60.

    PubMed  CAS  Google Scholar 

  • Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 2002;53(377):2039–55.

    PubMed  CAS  Google Scholar 

  • Andersson-Gunnerås S, Hellgren JM, Björklund S, et al. Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J. 2003;34(3):339–49.

    PubMed  Google Scholar 

  • Apelbaum A, Yang SF. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol. 1981;68(3):594–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynthesis. J Plant Growth Regul. 2007;26(2):92–105.

    CAS  Google Scholar 

  • Arteca JM, Arteca RN. A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol. 1999;39(2):209–19.

    PubMed  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, et al. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 1996;9(4):525–35.

    PubMed  CAS  Google Scholar 

  • Barry CS, Llop-Tous MI, Grierson D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 2000;123(3):979–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baur AH, Yang SF. Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochemistry. 1972;11(11):3207–14.

    CAS  Google Scholar 

  • Bleecker AB, Kenyon WH, Somerville SC, et al. Use of monoclonal antibodies in the purification and characterization of 1-aminocyclopropane-1-carboxylate synthase, an enzyme in ethylene biosynthesis. Proc Natl Acad Sci USA. 1986;83(20):7755–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blume B, Grierson D. Expression of ACC oxidase promoter—GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J. 1997;12(4):731–46.

    PubMed  CAS  Google Scholar 

  • Boller, T. Ethylene in pathogenesis and disease resistance. The plant hormone ethylene. Boca Raton: CRC Press; 1991. pp. 293–14.

    Google Scholar 

  • Boller T, Kende H. Regulation of wound ethylene synthesis in plants. Nature. 1980;286:259–60.

    Google Scholar 

  • Boller T, Herner RC, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta. 1979;145(3):293–303.

    PubMed  CAS  Google Scholar 

  • Bostick M, Lochhead SR, Honda A, et al. Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell. 2004;16(9):2418–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Broekaert WF, Delauré SL, De Bolle MFC, et al. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol. 2006;44:393–416.

    PubMed  CAS  Google Scholar 

  • Bürstenbinder K, Rzewuski G, Wirtz M, et al. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 2007;49(2):238–49.

    PubMed  Google Scholar 

  • Burstenbinder K, Sauter M. Early events in the ethylene biosynthetic pathway–regulation of the pools of methionine and S-adenosylmethionine. Ann Plant Rev Plant Hormon Ethylene. 2012;44:22.

    Google Scholar 

  • Capitani G, Hohenester E, Feng L, et al. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol. 1999;294(3):745–56.

    PubMed  CAS  Google Scholar 

  • Chae HS, Kieber JJ. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 2005;10(6):291–6.

    PubMed  CAS  Google Scholar 

  • Chae HS, Faure F, Kieber JJ. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell. 2003;15(2):545–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chappell J, Hahlbrock K, Boller T. Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase. Planta. 1984;161(5):475–80.

    PubMed  CAS  Google Scholar 

  • Christians MJ, Gingerich DJ, Hansen M, et al. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J. 2009;57(2):332–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dong JG, Fernandez-Maculet JC, Yang SF. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA. 1992;89(20):9789–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dorling S, McManus MT. The fate of ACC in higher plants. Annual Plant Reviews, The Plant Hormone Ethylene. 2012;44:86.

    Google Scholar 

  • Dugardeyn J, Vandenbussche F, Van Der Straeten D. To grow or not to grow: what can we learn on ethylene–gibberellin cross-talk by in silico gene expression analysis? J Exp Bot. 2008;59(1):1–16.

    PubMed  CAS  Google Scholar 

  • Elad Y. Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol Mol Plant Pathol. 1990;36(4):277–87.

    CAS  Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, et al. Elicitor-induced ethylene biosynthesis in tomato cells characterization and use as a bioassay for elicitor action. Plant Physiol. 1991;97(1):19–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Felix G, Regenass M, Spanu P, et al. The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P] phosphate. Proc Natl Acad Sci USA. 1994;91(3):952–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fujisawa M, Nakano T, Shima Y, et al. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell. 2013;25(2):371–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gallardo M, del Mar Delgado M, Sánchez-Calle IM, et al. Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation in thermoinhibited Cicer arietinum L. seeds. Plant Physiol. 1991;97(1):122–7.

    Google Scholar 

  • Groen SC, Whiteman NK, Bahrami AK, et al. Pathogen-triggered ethylene signaling mediates systemic-induced susceptibility to herbivory in Arabidopsis. Plant Cell. 2013;25(11):4755–66.

    PubMed  CAS  Google Scholar 

  • Grosskopf DG, Felix G, Boller T. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett. 1990;275(1):177–80.

    PubMed  CAS  Google Scholar 

  • Guzman P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2(6):513–23.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature. 1990;346:284–7.

    CAS  Google Scholar 

  • Hamilton AJ, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA. 1991;88(16):7434–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Han L, Li GJ, Yang KY, et al. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 2010;64(1):114–27.

    PubMed  CAS  Google Scholar 

  • Hanley KM, Meir S, Bramlage WJ. Activity of ageing carnation flower parts and the effects of 1-(malonylamino) cyclopropane-1-carboxylic acid-induced ethylene. Plant Physiol. 1989;91(3):1126–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009;57(4):606–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hoffman NE, Yang SF. Changes of 1-aminocyclopropane-1-carboxylic acid content in ripening fruits in relation to their ethylene production rates. J Am Soc Hort Sci. 1980;105:492–5.

    CAS  Google Scholar 

  • Hoffman NE, Yang SF, McKeon T. Identification of 1-(malonylamino) cyclopropane-1-carboxylic acid as a major conjugate of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in higher plants. Biochem Bioph Res Co. 1982;104(2):765–70.

    CAS  Google Scholar 

  • Hoffman NE, Liu Y, Yang SF. Changes in 1-(malonylamino) cyclopropane-1-carboxylic acid content in wilted wheat leaves in relation to their ethylene production rates and 1-aminocyclopropane-1-carboxylic acid content. Planta. 1983;157(6):518–23.

    PubMed  CAS  Google Scholar 

  • Hogsett WE, Raba RM, Tingey DT. Biosynthesis of stress ethylene in soybean seedlings: similarities to endogenous ethylene biosynthesis. Physiol Plantarum. 1981;53(3):307–14.

    CAS  Google Scholar 

  • Huai Q, Xia Y, Chen Y, et al. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5′-phosphate provide new insight into catalytic mechanisms. J Biol Chem. 2001;276(41):38210–6.

    PubMed  CAS  Google Scholar 

  • Huang S-J, Chang C-L, Wang P-H, et al. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis Thaliana. J Exp Bot. 2013;64(14):4343–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ito Y, Kitagawa M, Ihashi N, et al. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 2008;55(2):212–23.

    PubMed  CAS  Google Scholar 

  • Jiang Y, Fu J. Ethylene regulation of fruit ripening: molecular aspects. Plant Growth Regul. 2000;30(3):193–200.

    CAS  Google Scholar 

  • Jiao X-Z, Philosoph-Hadas S, Su L-Y, et al. The conversion of 1-(malonylamino) cyclopropane-1-carboxylic acid to 1-aminocyclopropane-1-carboxylic acid in plant tissues. Plant Physiol. 1986;81(2):637–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Joo S, Liu Y, Lueth A, et al. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 2008;54(1):129–40.

    PubMed  CAS  Google Scholar 

  • Kamiyoshihara Y, Iwata M, Fukaya T, et al. Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J. 2010;64(1):140–50.

    PubMed  CAS  Google Scholar 

  • Katz YS, Galili G, Amir R. Regulatory role of cystathionine-γ-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening. Plant Mol Biol. 2006;61(1–2):255–68.

    PubMed  CAS  Google Scholar 

  • Kende H. Enzymes of ethylene biosynthesis. Plant Physiol. 1989;91(1):1–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kende H. Ethylene biosynthesis. Annu Rev Plant Biol. 1993;44(1):283–307.

    CAS  Google Scholar 

  • Kende H, Boller T. Wound ethylene and 1-aminocyclopropane-1-carboxylate synthase in ripening tomato fruit. Planta. 1981;151(5):476–81.

    PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 1993;72(3):427–41.

    PubMed  CAS  Google Scholar 

  • Kim CY, Liu Y, Thorne ET, et al. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell. 2003;15(11):2707–18.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsen PB, Cancel JD. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. Plant J. 2004;38(4):626–38.

    PubMed  CAS  Google Scholar 

  • Li G, Meng X, Wang R, et al. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 2012;8(6):e1002767.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lieberman M, Kunishi AT. Ethylene production from methionine. Biochem J. 1965;97:449–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lieberman M, Kunishi A, Mapson LW, et al. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966;41(3):376–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lin J, Fan R, Wan X, et al. Structural analysis of the promoter of tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene (Le-ACS6). Chin Sci Bull. 2007;52(9):1217–22.

    CAS  Google Scholar 

  • Lincoln JE, Campbell AD, Oetiker J, et al. LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-1-carboxylate synthase gene of tomato (Lycopersicon esculentum). Expression inEscherichia coli, structural characterization, expression characteristics, and phylogenetic analysis. J Biol Chem. 1993;268(26):19422–30.

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell. 2004;16(12):3386–99.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Y, Su L-Y, Yang SF. Ethylene promotes the capability to malonylate 1-aminocyclopropane-1-carboxylic acid and D-amino acids in preclimacteric tomato fruits. Plant Physiol. 1985;77(4):891–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Love J, Björklund S, Vahala J, et al. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA. 2009;106(14):5984–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA. 2005;102(30):10736–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Luo X, Chen Z, Gao J, et al. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 2014;79(1):44–55.

    Google Scholar 

  • Lyzenga WJ, Stone SL. Regulation of ethylene biosynthesis through protein degradation. Plant Signal Behav. 2012;7(11):1438.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lyzenga WJ, Booth JK, Stone SL. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J. 2012;71(1):23–34.

    PubMed  CAS  Google Scholar 

  • Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell. 2011;23(4):1639–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 2011;157(3):1568–79.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin MN, Cohen JD, Saftner RA. A new 1-aminocyclopropane-1-carboxylic acid-conjugating activity in tomato fruit. Plant Physiol. 1995;109(3):917–26.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McClellan CA, Chang C. The role of protein turnover in ethylene biosynthesis and response. Plant Sci. 2008;175(1):24–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McMurchie EJ, McGlasson WB, Eaks IL. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 1972;237:235–6.

    PubMed  CAS  Google Scholar 

  • Miyazaki JH, Yang SF. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant. 1987;69(2):366–70.

    CAS  Google Scholar 

  • Murphy LJ, Robertson KN, Harroun SG, et al. A simple complex on the verge of breakdown: isolation of the Elusive Cyanoformate Ion. Science. 2014;344(6179):75–8.

    PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, et al. Ethylene as a signal mediating the wound response of tomato plants. Science. 1996;274(5294):1914–7.

    PubMed  Google Scholar 

  • Paponov IA, Paponov M, Teale W, et al. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant. 2008;1(2):321–37.

    PubMed  CAS  Google Scholar 

  • Peiser G, Yang SF. Evidence for 1-(malonylamino) cyclopropane-1-carboxylic acid being the major conjugate of aminocyclopropane-1-carboxylic acid in tomato fruit. Plant Physiol. 1998;116(4):1527–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peng H-P, Lin T-Y, Wang N-N, et al. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol. 2005;58(1):15–25.

    PubMed  CAS  Google Scholar 

  • Pintard L, Willems A, Peter M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 2004;23(8):1681–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prasad ME, Schofield A, Lyzenga W, et al. Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol. 2010;153(4):1587–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qin Y-M, Hu C-Y, Pang Y, et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell. 2007;19(11):3692–704.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, et al. Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound-and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol. 2007;143(1):410–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ravanel S, Gakière B, Job D, et al. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA. 1998;95(13):7805–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Riov J, Yang SF. Autoinhibition of ethylene production in citrus peel discs Suppression of 1-aminocyclopropane-1-carboxylic acid synthesis. Plant Physiol. 1982;69(3):687–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato T, Theologis A. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA. 1989;86(17):6621–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E, et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell. 2007;19(7):2213–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, et al. Biosynthesis of nicotianamine in the suspension-cultured cells of tobacco (Nicotiana megalosiphon). Biol Met. 1989;2(3):142–5.

    CAS  Google Scholar 

  • Skottke KR, Yoon GM, Kieber JJ, et al. Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet. 2011;7(4):e1001370.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spanu P, Grosskopf DG, Felix G, et al. The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol. 1994;106(2):529–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tarun AS, Theologis A. Complementation Analysis of Mutants of 1-Aminocyclopropane1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J Biol Chem. 1998;273(20):12509–14.

    PubMed  CAS  Google Scholar 

  • Tatsuki M, Mori H. Rapid and transient expression of 1-aminocyclopropane-1-carboxylate synthase isogenes by touch and wound stimuli in tomato. Plant Cell Physiol. 1999;40(7):709–15.

    PubMed  CAS  Google Scholar 

  • Tatsuki M, Mori H. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem. 2001;276(30):28051–7.

    PubMed  CAS  Google Scholar 

  • Thomann A, Lechner E, Hansen M, et al. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and-independent mechanisms. PLoS Genet. 2009;5(1):e1000328.

    PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka A, Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004a;136(2):2982–3000.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuchisaka A, Theologis A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci USA. 2004b;101(8):2275–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, et al. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics. 2009;183(3):979–1003.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Van der Straeten D, Van Wiemeersch L, Goodman HM, et al. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci USA. 1990;87(12):4859–63.

    PubMed  PubMed Central  Google Scholar 

  • Ververidis P, John P. Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry. 1991;30(3):725–7.

    CAS  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA. 1998;95(8):4766–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Von Dahl CC, Baldwin IT. Deciphering the role of ethylene in plant–herbivore interactions. J Plant Growth Regul. 2007;26(2):201–9.

    CAS  Google Scholar 

  • von Dahl CC, Winz RA, Halitschke R, et al. Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J. 2007;51(2):293–307.

    Google Scholar 

  • Wang H, Mei W, Qin Y, et al. 1-Aminocyclopropane-1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation. Acta Bioch Bioph Sin. 2011;43(8):654–61.

    CAS  Google Scholar 

  • Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14(suppl 1):S131–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang KLC, Yoshida H, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature. 2004;428(6986):945–50.

    PubMed  CAS  Google Scholar 

  • Wang NN, Shih M-C, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot. 2005;56(413):909–20.

    PubMed  CAS  Google Scholar 

  • White MF, Vasquez J, Yang SF, et al. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms. Proc Natl Acad Sci USA. 1994;91(26):12428–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 1999;119(2):521–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu J, Zhang S. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Mol Plant. 2014;7(6):939–42.

    Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, et al. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 2003;278(49):49102–12.

    PubMed  CAS  Google Scholar 

  • Yang SF. The biochemistry of ethylene: biogenesis and metabolism. Recent Adv Phytochem. 1974;7:131–64.

    CAS  Google Scholar 

  • Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol. 1984;35(1):155–89.

    CAS  Google Scholar 

  • Yang SF, Ku HS, Pratt HK. Ethylene production from methionine as mediated by flavin monocucleotide and light. Biochem Bioph Res Co. 1966;24(5):739–43.

    CAS  Google Scholar 

  • Yoon GM, Kieber JJ. ACC synthase and its cognate E3 ligase are inversely regulated by light. Plant Signal Behav. 2013;8(12):e26478.

    PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Nagata M, Saito K, et al. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 2005;5(1):14.

    PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Wang KLC, Chang C-M, et al. The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol Biol. 2006;62(3):427–37.

    PubMed  CAS  Google Scholar 

  • Yoshii H, Imaseki H. Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene. Plant Cell Physiol. 1982;23(4):639–49.

    CAS  Google Scholar 

  • Yu Y-B, Yang SF. Biosynthesis of wound ethylene. Plant Physiol. 1980;66(2):281–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu Y-B, Adams DO, Yang SF. Regulation of auxin-induced ethylene production in mung bean hypocotyls role of 1-aminocyclopropane-1-carboxylic acid. Plant Physiol. 1979a;63(3):589–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu Y-B, Adams DO, Yang SF. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys. 1979b;198(1):280–6.

    PubMed  CAS  Google Scholar 

  • Zarembinski TI, Theologis A. Ethylene biosynthesis and action: a case of conservation. In signals and signal transduction pathways in plants. Berlin: Springer; 1994. pp. 343–61.

    Google Scholar 

  • Zhang S, Klessig DF. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci USA. 1998;95(12):7225–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004;136(1):2621–32.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize for not being able to cite all relevant publications due to page limitation. This work was supported by the National Nature Science Foundation of China (Grant No. 91317303) and the third stage of Zhejiang University 985 Project (No. 118000-193411801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Xu or Shuqun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, J., Zhang, S. (2015). Ethylene Biosynthesis and Regulation in Plants. In: Wen, CK. (eds) Ethylene in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9484-8_1

Download citation

Publish with us

Policies and ethics