Advertisement

Bioinspired Silica for Enzyme Immobilisation: A Comparison with Traditional Methods

  • Claire Forsyth
  • Siddharth V. PatwardhanEmail author
Chapter
Part of the Advances in Silicon Science book series (ADSS, volume 5)

Abstract

Enzyme applications are increasing in popularity due to their efficiency, and the green processing they offer. Enzymes do, however, have several inherent problems which restrict their use, such as their solubility and instability in organic media or under harsh conditions. Enzyme stabilisation and immobilisation aims to attenuate such problems. Immobilisation allows supporting or confining the enzyme for the duration of the reaction. This leads to improved product purity, allows the enzyme to be reused, offers the option of continuous processing and can increase enzyme stability, therefore increasing potential applications and improving process efficiency. Many of the current approaches to enzyme immobilisation, however, suffer from several problems such as long preparation times, tedious multistep procedures and loss of enzyme activity during immobilisation. Furthermore, due to the materials and techniques involved, many immobilisation methods could not be classed as green. These drawbacks therefore restrict their industrial applications. One promising area of enzyme immobilisation appears to be through immobilising enzymes using silica produced via a bioinspired route. Such routes aim to mimic nature’s approach to producing silica, and are favourable due to their simplicity, mild conditions, low cost and short preparation times. In this review, we detail various immobilisation techniques adopted, with example of lipases, and compare them with a recently developed bioinspired silica route for enzyme immobilisation. We hope that this comparison will enable us with a better understanding of this new method, as well as help identify its strengths and weaknesses.

Keywords

Enzyme Immobilisation Fumed Silica Free Enzyme Covalent Binding Hexamethylene Diisocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37(5):94A–101ACrossRefGoogle Scholar
  2. 2.
    Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26(10):566–572CrossRefGoogle Scholar
  3. 3.
    Aehle W, Perham RN, Michal G, Caddow AJ et al (2008) Enzymes, 1. General. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a09_341.pub3Google Scholar
  4. 4.
    Aehle W, Perham RN, Michal G, Jonke A et al (2003) Enzymes. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/14356007.a09_341.pub2Google Scholar
  5. 5.
    Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351CrossRefGoogle Scholar
  6. 6.
    Langrand G, Rondot N, Triantaphylides C, Baratti J (1990) Short chain flavor esters synthesis by microbial lipases. Biotechnol Lett 12(8):581–586CrossRefGoogle Scholar
  7. 7.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40(6):1451–1463CrossRefGoogle Scholar
  8. 8.
    Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  9. 9.
    Cao LQ, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotech 14(4):387–394CrossRefGoogle Scholar
  10. 10.
    Cao LQ (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9(2):217–226CrossRefGoogle Scholar
  11. 11.
    Balcao VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: State of the art. Enzyme Microb Technol 18(6):392–416CrossRefGoogle Scholar
  12. 12.
    Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? Trends Biotechnol 17(8):326–335CrossRefGoogle Scholar
  13. 13.
    Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639–1650CrossRefGoogle Scholar
  14. 14.
    Weetall HH (1993) Preparation of Immobilized Proteins Covalently Coupled Through Silane Coupling Agents to Inorganic Supports. Appl Biochem Biotechnol 41(3):157–188CrossRefGoogle Scholar
  15. 15.
    Weetall HH (1969) Trypsin and papain covalently coupled to porous glass: preparation and characterization. Science 166:615–617CrossRefGoogle Scholar
  16. 16.
    Bastida A, Sabuquillo P, Armisen P, Fernandez-Lafuente R et al (1998) Single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58(5):486–493CrossRefGoogle Scholar
  17. 17.
    Jaladi H, Katiyar A, Thiel SW, Guliants VV et al (2009) Effect of pore diffusional resistance on biocatalytic activity of Burkholderia cepacia lipase immobilized on SBA-15 hosts. Chem Eng Sci 64(7):1474–1479CrossRefGoogle Scholar
  18. 18.
    Zheng S (2005) Effect of Pore Curvature and Surface Chemistry of Model Silica Hosts on Biocatalytic Activity if Immobilised Lipase. (Electronic Thesis or Dissertation). Accessed https://etd.ohiolink.edu/. University of Cincinnati, Cincinnati.
  19. 19.
    Cruz JC, Pfromm PH, Rezac ME (2009) Immobilization of Candida antarctica Lipase B on fumed silica. Process Biochem 44(1):62–69CrossRefGoogle Scholar
  20. 20.
    Devi B, Guo Z, Xu XB (2009) Characterization of cross-linked lipase aggregates. J Am Oil Chem Soc 86(7):637–642Google Scholar
  21. 21.
    Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49(5):527–534CrossRefGoogle Scholar
  22. 22.
    Han Y, Lee SS, Ying JY (2006) Pressure-driven enzyme entrapment in siliceous mesocellular foam. Chem Mater 18(3):643–649CrossRefGoogle Scholar
  23. 23.
    He F, Zhuo RX, Liu LJ, Jin DB et al (2001) Immobilized lipase on porous silica beads: preparation and application for enzymatic ring-opening polymerization of cyclic phosphate. React Funct Polym 47(2):153–158CrossRefGoogle Scholar
  24. 24.
    Bai S, Wu CZ, Gawlitza K, von Klitzing R et al (2010) Using hydrogel microparticles to transfer hydrophilic nanoparticles and enzymes to organic media via stepwise solvent exchange. Langmuir 26(15):12980–12987CrossRefGoogle Scholar
  25. 25.
    Brigida AIS, Pinheiro ADT, Ferreira ALO, Pinto GAS et al (2007) Immobilization of Candida antarctica lipase B by covalent attachment to green coconut fiber. Appl Biochem Biotechnol 137:67–80CrossRefGoogle Scholar
  26. 26.
    Rodrigues DS, Mendes AA, Adriano WS, Goncalves LRB et al (2008) Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J Mol Catal B-Enzym 51(3–4):100–109CrossRefGoogle Scholar
  27. 27.
    Forde J, Vakurov A, Gibson TD, Millner P et al (2010) Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Catal B-Enzym 66(1–2):203–209CrossRefGoogle Scholar
  28. 28.
    Contesini FJ, Lopes DB, Macedo GA, Nascimento MdG et al (2010) Aspergillus sp lipase: Potential biocatalyst for industrial use. J Mol Catal B-Enzym 67(3–4):163–171CrossRefGoogle Scholar
  29. 29.
    Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. Appl Biochem Biotechnol 118(1):155–170CrossRefGoogle Scholar
  30. 30.
    Pandey A, Benjamin S, Soccol CR, Nigam P et al (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29(2):119–131Google Scholar
  31. 31.
    Ban K, Kaieda M, Matsumoto T, Kondo A et al (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8(1):39–43CrossRefGoogle Scholar
  32. 32.
    Schoerken U, Kempers P (2009) Lipid biotechnology: Industrially relevant production processes. Eur J Lipid Sci Technol 111(7):627–645CrossRefGoogle Scholar
  33. 33.
    Matsuura S-i, Ishii R, Itoh T, Hamakawa S et al (2009) On-chip encapsulation of lipase using mesoporous silica: A new route to enzyme microreactors. Mater Lett 63(28):2445–2448CrossRefGoogle Scholar
  34. 34.
    Hwang S, Lee KT, Park JW, Min BR et al (2004) Stability analysis of Bacillus stearothermophilus L1 lipase immobilized on surface-modified silica gels. BiochemEng J 17(2):85–90Google Scholar
  35. 35.
    Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM et al (2009) Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J Mol Catal B-Enzym 57(1–4):171–176CrossRefGoogle Scholar
  36. 36.
    Chen B, Miller EM, Miller L, Maikner JJ et al (2007) Effects of macroporous resin size on Candida antarctica lipase B adsorption, fraction of active molecules, and catalytic activity for polyester synthesis. Langmuir 23(3):1381–1387CrossRefGoogle Scholar
  37. 37.
    Chen B, Miller ME, Gross RA (2007) Effects of porous polystyrene resin parameters on Candida antarctica Lipase B adsorption, distribution, and polyester synthesis activity. Langmuir 23(11):6467–6474CrossRefGoogle Scholar
  38. 38.
    Chen B, Hu J, Miller EM, Xie W et al (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: Catalysts for polyester synthesis. Biomacromolecules 9(2):463–471CrossRefGoogle Scholar
  39. 39.
    Bhatia SC (2008) Textbook of Biotechnology. Atlantic Publishing, New DelhiGoogle Scholar
  40. 40.
    Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol Bioprocess Eng 7(2):57–66CrossRefGoogle Scholar
  41. 41.
    Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468CrossRefGoogle Scholar
  42. 42.
    Tischer W, Wedekind F (1999) Immobilized enzymes: Methods and applications. Top Curr Chem 200:95–126CrossRefGoogle Scholar
  43. 43.
    Wykesa JR, Dunnilla P, Lilly MD (1971) Immobilisation of α-amylase by attachment to soluble support materials. Biochim Biophys Acta (BBA)—Enzymology 250(3):522–529Google Scholar
  44. 44.
    Knight K (2000) Immobilization of lipase from Fusarium solani FS1. Braz J Microbiol 31(3):219–221CrossRefGoogle Scholar
  45. 45.
    Betancor L, Luckarift HR, Seo JH, Brand O et al (2008) Three-dimensional immobilization of beta-galactosidase on a silicon surface. Biotechnol Bioeng 99(2):261–267CrossRefGoogle Scholar
  46. 46.
    Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25(2):197–204CrossRefGoogle Scholar
  47. 47.
    Averill BA, Eldredge P (2007) Chemistry: Principles, Patterns, and Applications 1st edition. Prentice HallGoogle Scholar
  48. 48.
    Sheldon RA, Schoevaart R, van Langen LM (2006) Cross-linked enzyme aggregates. Methods in Biotechnol 22:31–45CrossRefGoogle Scholar
  49. 49.
    Buthe A, Wu S, Wang P (2011) Nanoporous Silica glass for the immobilization of interactive enzyme systems. In: Minteer SD (ed) Enzyme stabilization and immobilization: Methods and protocols. Springer Protocols-Humana Press, New YorkGoogle Scholar
  50. 50.
    Otero C, Ballesteros A, Guisan JM (1988) Immobilization stabilization of lipase from CANDIDA-RUGOSA. Appl Biochem Biotechnol 19(2):163–175CrossRefGoogle Scholar
  51. 51.
    Katchalski-Katzir E, Kraemer DM (2000) Eupergit ® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B-Enzymatic 10(1–3):157–176CrossRefGoogle Scholar
  52. 52.
    Barbosa O, Ortiz C, Torres R, Fernandez-Lafuente R (2011) Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. J Mol Catal B-Enzym 71(3–4):124–132CrossRefGoogle Scholar
  53. 53.
    Blank K, Morfill J, Gaub HE (2006) Site-specific immobilization of genetically engineered variants of Candida antarctica lipase B. ChemBioChem 7(9):1349–1351CrossRefGoogle Scholar
  54. 54.
    Serra I, Serra CD, Rocchietti S, Ubiali D et al (2011) Stabilization of thymidine phosphorylase from Escherichia coli by immobilization and post immobilization techniques. Enzyme Microb Technol 49(1):52–58CrossRefGoogle Scholar
  55. 55.
    Galarneau A, Mureseanu M, Atger S, Renard G et al (2006) Immobilization of lipase on silicas. Relevance of textural and interfacial properties on activity and selectivity. New J Chem 30(4):562–571CrossRefGoogle Scholar
  56. 56.
    Daoud FB-O, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: Kinetics and equilibrium studies. Colloids Surf B-Biointerfaces 75(1):93–99CrossRefGoogle Scholar
  57. 57.
    Reshmi R, Sanjay G, Sugunan S (2006) Enhanced activity and stability of alpha-amylase immobilized on alumina. Catal Commun 7(7):460–465CrossRefGoogle Scholar
  58. 58.
    Torres R, Ortiz C, Pessela BCC, Palomo JM et al (2006) Improvement of the enantio selectivity of lipase (fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose under different experimental conditions. Enzyme Microbial Techno 39(2):167–171CrossRefGoogle Scholar
  59. 59.
    Veum L, Kanerva LT, Halling PJ, Maschmeyer T et al (2005) Optimisation of the enantioselective synthesis of cyanohydrin esters. Adv Synth Catal 347(7–8):1015–1021CrossRefGoogle Scholar
  60. 60.
    Serra E, Diez E, Diaz I, Blanco RM (2010) A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization. Microporous Mesoporous Mater 132(3):487–493Google Scholar
  61. 61.
    Kennedy JF, Kalogerakis B, Cabral JMS (1984) Surface immobilization and entrapping of enzymes on glutaraldehyde crosslinked gelatin particles. Enzyme Microb Technol 6(3):127–131CrossRefGoogle Scholar
  62. 62.
    Moehlenbrock MJ, Minteer SD (2011) Introduction to the field of enzyme immobilization and stabilization. In: Minteer SD (ed) Enzyme stabilization and immobilization: Methods and protocols. Springer Protocols-Humana Press, New York.Google Scholar
  63. 63.
    Gupta MN, Raghava S (2011) Enzyme stabilization via cross-linked enzyme aggregates. Methods mol biol 679:133–145Google Scholar
  64. 64.
    Sheldon RA (2007) Cross-linked enzyme aggregates (CLEA ® s): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587CrossRefGoogle Scholar
  65. 65.
    Lopez-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnol Lett 24(16):1379–1383CrossRefGoogle Scholar
  66. 66.
    Tomin A, Weiser D, Hellner G, Bata Z et al (2011) Fine-tuning the second generation sol-gel lipase immobilization with ternary alkoxysilane precursor systems. Process Biochem 46(1):52–58CrossRefGoogle Scholar
  67. 67.
    Gonzalez-Saiz JM, Pizarro C (2001) Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. Eur Polym J 37(3):435–444CrossRefGoogle Scholar
  68. 68.
    Brennan JD (2007) Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins: Toward novel solid-phase assays for high-throughput screening. Acc Chem Res 40(9):827–835CrossRefGoogle Scholar
  69. 69.
    Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47(27):7567–7582CrossRefGoogle Scholar
  70. 70.
    Brinker J, Scherer G (1990) Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  71. 71.
    Reetz MT (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv Mater 9(12):943–954CrossRefGoogle Scholar
  72. 72.
    Reetz MT (2006) Practical protocols for lipase immobilization via sol-gel techniques. Method Biotechnol 22:65–76CrossRefGoogle Scholar
  73. 73.
    Reetz MT, Tielmann P, Wiesenhofer W, Konen W et al (2003) Second generation sol-gel encapsulated lipases: Robust heterogeneous biocatalysts. Adv Synth Catal 345(6–7):717–728CrossRefGoogle Scholar
  74. 74.
    Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22(2):211–213CrossRefGoogle Scholar
  75. 75.
    Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification. Chem Commun 9:1113–1121Google Scholar
  76. 76.
    Naik RR, Tomczak MM, Luckarift HR, Spain JC et al (2004) Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chem Commun 15:1684–1685Google Scholar
  77. 77.
    McAuliffe JC, Smith WC, Bond R, Zimmerman J et al (2005) Template-driven enzyme immobilization: Development of a rapid and practical process inspired by diatoms. Abstracts of Papers of the American Chemical Society 229:U1159–U1159.Google Scholar
  78. 78.
    Edwards JS, Kumbhar A, Roberts A, Hemmert AC et al (2011) Immobilization of active human carboxylesterase 1 in biomimetic silica nanoparticles. Biotechnol Progr 27(3):863–869CrossRefGoogle Scholar
  79. 79.
    Zamora P, Narvaez A, Dominguez E (2009) Enzyme-modified nanoparticles using biomimetically synthesized silica. Bioelectrochemistry 76(1–2):100–106CrossRefGoogle Scholar
  80. 80.
    Chen G-C, Kuan IC, Hong J-R, Tsai B-H et al (2011) Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica. Biotechnol Lett 33(3):525–529CrossRefGoogle Scholar
  81. 81.
    Kuan IC, Wu J-C, Lee S-L, Tsai C-W et al (2010) Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by encapsulation in polyallylamine-mediated biomimetic silica. Biochem Eng J 49(3):408–413CrossRefGoogle Scholar
  82. 82.
    Miller SA, Hong ED, Wright D (2006) Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromol Biosci 6(10):839–845CrossRefGoogle Scholar
  83. 83.
    Tian F, Wu W, Broderick M, Vamvakaki V et al (2010) Novel microbiosensors prepared utilizing biomimetic silicification method. Biosens Bioelectron 25(11):2408–2413CrossRefGoogle Scholar
  84. 84.
    Johnson GR, Luckarift HR (2011) Enzyme stabilization via bio-templated silicification reactions. Methods mol biol 679:85–97Google Scholar
  85. 85.
    Kristensen JB, Meyer RL, Poulsen CH, Kragh KM et al (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12(3):387–394CrossRefGoogle Scholar
  86. 86.
    Li L, Jiang Z, Wu H, Feng Y et al (2009) Protamine-induced biosilica as efficient enzyme immobilization carrier with high loading and improved stability. Mater Sci Eng CMater Biol Appl 29(6):2029–2035CrossRefGoogle Scholar
  87. 87.
    Neville F, Broderick MJF, Gibson T, Millner PA (2011) Fabrication and activity of silicate nanoparticles and nanosilicate-entrapped enzymes using polyethyleneimine as a biomimetic polymer. Langmuir 27(1):279–285CrossRefGoogle Scholar
  88. 88.
    Lai JK, Chuang TH, Jan JS, Wang SSS (2010) Efficient and stable enzyme immobilization in a block copolypeptide vesicle-templated biomimetic silica support. Colloids Surf B-Biointerfaces 80(1):51–58CrossRefGoogle Scholar
  89. 89.
    Luckarift HR, Ku BS, Dordick JS, Spain JC (2007) Silica-immobilized enzymes for multi-step synthesis in microfluidic devices. Biotechnol Bioeng 98(3):701–705CrossRefGoogle Scholar
  90. 90.
    Roth KM, Zhou Y, Yang WJ, Morse DE (2005) Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J Am Chem Soc 127(1):325–330CrossRefGoogle Scholar
  91. 91.
    Patwardhan SV, Perry CC (2010) Synthesis of enzyme and quantum dot in silica by combining continuous flow and bioninspired routes. Silicon 2:33–39CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowU.K.

Personalised recommendations