Skip to main content

Protease-Mediated Hydrolysis and Condensation of Tetra- and Trialkoxysilanes

  • Chapter
  • First Online:
  • 790 Accesses

Part of the book series: Advances in Silicon Science ((ADSS,volume 5))

Abstract

Silica is a common material with uses in a diverse range of products. New methods for producing silica are always being developed. In the past 15 years biological and bio-inspired approaches for silica production have gained momentum. One of the challenges in designing new materials is developing new methods for their production and gaining a complete understanding of all of the processing parameters. We have been studying the interaction(s) between enzymes and organically modified alkoxysilanes in an attempt to determine the kinetics of hydrolysis and condensation, as well as to determine a general reaction mechanism. We believe that the nature of the enzyme (i.e. mode of catalysis, active site, and secondary interactions) contributes to the ability of any given enzyme to act as a catalyst for the production of silica-based materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129–1132

    Google Scholar 

  2. Kroger N, Deutzmann R, Sumper M (2001) J Biol Chem 276:26066–26070

    Article  CAS  Google Scholar 

  3. Wenzl S, Hett R, Richthammer P, Sumper M (2008) Angew Chem Int Ed 7:1729–1732

    Article  Google Scholar 

  4. Shimizu K, Cha JN, Stucky GD, Morse DE (1998) Proc Natl Acad Sci U S A 95:6234–6238

    Article  CAS  Google Scholar 

  5. Iler RK (1979) The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  6. Perry CC, Keeling-Tucker T (1998) Chem Commun 23:2587–2588

    Article  Google Scholar 

  7. Perry CC, Keeling-Tucker T (2003) Colloid Polym Synth 81:652–664

    Article  Google Scholar 

  8. Kroger N, Lorenz S, Brunner E, Sumper M (2002) Science 298:584–586

    Article  Google Scholar 

  9. Kroger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Proc Natl Acad Sci U S A 97:14133–14138

    Article  CAS  Google Scholar 

  10. Sumper M (2002) Science 295:2430–2433

    Article  CAS  Google Scholar 

  11. Sumper M (2004) Angew Chem Int Ed 43:2251–2254

    Article  CAS  Google Scholar 

  12. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Ed 38:779–782

    Article  Google Scholar 

  13. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci U S A 96:361–365

    Article  CAS  Google Scholar 

  14. Bassindale AR, Branstadt KF, Lane TH, Taylor PG (2003) J Inorg Biochem 96:401–406

    Article  CAS  Google Scholar 

  15. Zelisko PM, Dudding T, Arnelien KR, Stanisic H (2010) In: Clarson SJ, Owen MJ, Smith SD, Van Dyke ME (eds.) Advance of silicones and silicone-modified materials. Chap. 5, pp 47–57

  16. Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Chem Commun 43:5544–5546

    Article  Google Scholar 

  17. Coradin T, Coupé A, Livages J (2003) Colloid Surf B Biointerfaces 29:189–196

    Article  CAS  Google Scholar 

  18. Abbate V, Bassindale AR, Brandstadt KF, Lawson R, Taylor PG (2010) Dalton Trans 39:9361–9368

    Article  CAS  Google Scholar 

  19. Buisson P, El Rassy H, Maury S, Pierre AC (2003) J Sol-Gel Sci Technol 27:373–379

    Article  CAS  Google Scholar 

  20. Pierre AC, Buisson P (2006) J Sol-Gel Sci Technol 38:63–72

    Article  CAS  Google Scholar 

  21. Favre N, Ahmad Y, Pierre AC (2011) J Sol-Gel Sci Technol 58:442–451

    Article  CAS  Google Scholar 

  22. Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Chem Commun 43:5544–5546

    Article  Google Scholar 

  23. Frampton MB, Simionescu R, Zelisko PM (2009) Silicon 1:47–56

    Article  CAS  Google Scholar 

  24. Hook RJ (1996) J Non-Cryst Solids 195:1–16

    Article  CAS  Google Scholar 

  25. Sugahara Y, Okada S, Sato S, Kuroda K, Kato C (1994) J Non-Cryst Solids 167:21–28

    Article  CAS  Google Scholar 

  26. Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2004) J Sol-Gel Sci Technol 39:175–183

    Article  Google Scholar 

  27. Sugahara Y, Inoue T, Kuroda K (1997) J Mater Chem 7:53–59

    Article  CAS  Google Scholar 

  28. Hung SH, Hedstrom L (1998) Prot Eng 11:669–673

    Article  CAS  Google Scholar 

  29. Voet D, Voet JG (1990) Biochemistry, 3rd edn. Wiley, New York

    Google Scholar 

  30. Berg JM, Tymoczko J, Stryer J (2002) Biochemistry, 5th edn. W.H. Freeman and Company, New York

    Google Scholar 

  31. Frampton MB, Simionescu R, Dudding T, Zelisko PM (2010) J Mol Cat B Enz 66:105–112

    Article  CAS  Google Scholar 

  32. Frampton MB, Zelisko PM (2012) Silicon 4:51–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Razvan Simionescu (Brock University) for assistance in acquiring NMR spectra. Funding for these projects was provided by Brock University, Natural Science and Engineering Research Council (NSERC), and the Ontario Partnership for Industrialization and Commercialization (OPIC). MBF was supported through graduate scholarships from the Ontario Scholarship (OGS), the Ontario Graduate Scholarship in Science and Technology (OGSST) and the Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Zelisko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frampton, M., Zelisko, P. (2014). Protease-Mediated Hydrolysis and Condensation of Tetra- and Trialkoxysilanes. In: Zelisko, P. (eds) Bio-Inspired Silicon-Based Materials. Advances in Silicon Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9439-8_3

Download citation

Publish with us

Policies and ethics