Representing Organizational Uncertainty

  • Joan-Josep VallbéEmail author
Part of the Law, Governance and Technology Series book series (LGTS, volume 21)


This chapter presents the main data analysis of the book. First, the hypotheses are presented. Second, the framework for treating text as data is discussed, and textual data are described. Third, the data analysis itself is performed. The analysis begins exploring the extent to which the problems raised during the on-call service are indeed different from the other problematic situations judges deal with in their work. After that, we test whether the problems faced when on call are not related to theoretical doubts but mainly practical doubts, i.e., they are identifiable demands from the outer environment whose solution is not specifically contained in the legal knowledge they acquire either in the law degree or preparing the entrance examination.


Domestic Violence Multidimensional Scaling Topic Model Textual Data Latent Dirichlet Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ayuso, M., M. Bécue-Bertaut, R. Álvarez, O. Valencia, M. Álvarez, M. HernÁndez, and M. Santolino. 2002. Jueces jóvenes en España, 2002. Análisis estadístico de las encuestas a los jueces en su primer destino (promociones 48/49 y 50). Internal report (project sec-2001-2581-c02-01/02), Consejo General del Poder Judicial [General Council of the Judiciary].Google Scholar
  2. Ayuso, M., M. Bécue-Bertaut, R.Álvarez, O.Valencia, M.Álvarez, and M. Santolino. 2003. AnÁlisis estadístico de las encuestas a los jueces en su primer destino. Internal Report SEC-2001-2581- C02-01/02, Consejo General del Poder Judicial [General Council of the Judiciary], Escuela Judicial (Barcelona).Google Scholar
  3. Baeza-Yates, R., and B. Ribeiro-Neto. 1999. Modern information retrieval. New York: ACM.Google Scholar
  4. Basu, S., and I. Davidson. 2009. Constrained partitional clustering of text data: An overview. In Text mining. Classification, clustering, and applications, ed. A. N. Srivastava and M. Sahami, 155–184. Boca Raton: Chapman and Hall.Google Scholar
  5. Bécue-Bertaut, M., M. Rajman, L. Lebart, and E. Gaussier. 2005. Extraction of the useful words from a decisional corpus. Contribution of correspondence analysis. StudFuzz 185:159–179.Google Scholar
  6. Benjamins, V. R., J. Contreras, P. Casanovas, M. Ayuso, M. Bécue-Bertaut, M. Lemus, and C. Urios. 2004. Ontologies of professional legal knowledge as the basis for intelligent it support for judges. Artificial Intelligence and Law 12 (4): 359–378.Google Scholar
  7. Benoit, K., and M. Laver. 2007. Benchmarks for text analysis: A response to budge and pennings. Electoral Studies 26:130–135.Google Scholar
  8. Benoit, K., M. Laver, and S. Mikhailov. 2009. Treating words as data with error: Uncertainty in text statements of policy positions. American Journal of Political Science 53 (2): 495–513.Google Scholar
  9. Bénzecri, J.-P. 1982. L’analyse des données. Paris: Dunod.Google Scholar
  10. Blasius, J., and M. Greenacre. 2006. Correspondence analysis and related methods in practice. In Multiple correspondence analysis and related methods, ed. M. Greenacre and J. Blasius, 3–40. Boca Raton: Chapman and Hall.Google Scholar
  11. Blei, D. 2012. Probabilistic topic models. Communications of the ACM 55:77–84.Google Scholar
  12. Blei, D., and J. D. Lafferty. 2009. Topic models. In Text mining. Classification, clustering, and applications, ed. A. N. Srivastava and M. Sahami, 71–94. Boca Raton: CRC Press.Google Scholar
  13. Blei, D., A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research 3:993–1022.Google Scholar
  14. Borg, I., and P. J. F. Groenen. 2005. Modern multidimensional scaling. Theory and applications. 2nd ed. New York: Springer.Google Scholar
  15. Bray, J. R., and J. T. Curtis. 1957. An ordination of upland forest communities of southern wisconsin. Ecological Monographs 27:325–349.Google Scholar
  16. Budge, I., and P. Pennings. 2007a. Do they work? Validating computerised word frequency estimates against policy series. Electoral Studies 26:121–129.Google Scholar
  17. Budge, I., and P. Pennings. 2007b. Missing the message and shooting the messenger: Benoit and laver’s ‘response’. Electoral Studies 26:136–141.Google Scholar
  18. Budge, I., H.-D. Klingemann, A. Volkens, and J. Bara. eds. 2001. Mapping policy preferences. Estimates for parties, electors, and governments 1945–1998. Oxford: Oxford University Press.Google Scholar
  19. Buntine, W. 2009. Estimating likelihoods for topic models. NICTA Technical Report NICTA-SML-09-001, NICTA, Canberra (AU).Google Scholar
  20. Buntine, W., and A. Jakulin. 2004. Applying discrete PCA in data analysis. In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence (UAI 2004), ed. C. Meek and J. Halpern, Banff, Canada.Google Scholar
  21. Buntine, W., and A. Jakulin. 2006. Discrete component analysis. In Subspace, latent structure and feature selection techniques, ed. C. J. Saunders, S. R. Gunn, M. Grobelnik, and J. Shawe-Taylor. Berlin: Springer-Verlag.Google Scholar
  22. Carmona, J., S. Cervell, L. Márquez, M. A. Martí, L. Padró, R. Placer, H. Rodríguez, M. Taulé, and J. Turmo. 1998. An environment for morphosyntactic processing of unrestricted Spanish text. In Proceedings of the first conference on language resources and evaluation, 915–922, Granada, Spain.Google Scholar
  23. Casellas, N. 2011. Legal ontology engineering: Methodologies, trends, and the ontology of professional judicial knowledge. Dordrecht: Springer.Google Scholar
  24. Ciborra, C. 1999. Notes on improvisation and time in organizations. Accounting, Management and Information Technologies 9:77–94.Google Scholar
  25. Cyert, R. M., E. A. Feigenbaum, and J. G. March. 1959. Models in a behavioral theory of the firm. Behavioral Science 4 (2): 81–95.Google Scholar
  26. Deerwester, S., S. T. Dumais, G. W. Furnas, and T. K. L. R. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science 41 (6): 391–407.Google Scholar
  27. Escofier, B., and J. Pagès. 1992. Análisis factoriales simples y múltiples: objetivos, métodos e interpretación. Euskal Herriko Unibertsitateko Argitarapen-Zerbitzua, Bilbao.Google Scholar
  28. Falcó-Gimeno, A., and J.-J. Vallbé. 2013. Coalition agreements and party preferences: A principal components analysis approach. In 3rd annual general conference of the European Association of Political Science (EPSA), Barcelona.Google Scholar
  29. Feinerer, I. 2008. tm: Text Mining Package, R package version 0.3-3 edition.Google Scholar
  30. Feinerer, I., K. Hornik, and D. Meyer 2008. Text mining infrastructure in R. Journal of Statistical Software 25 (5): 1–54.Google Scholar
  31. Fortuna, B., M. Grobelnik, and D. Mladenič. 2005. Visualization of text document corpus. Informatica 29:497–502.Google Scholar
  32. Fortuna, B., C. Galleguillos, and N. Cristianini 2009. Detection of bias in media outlets with statistical learning methods. In Text mining. Classification, clustering, and applications, ed. A. N. Srivastava and M. Sahami, 27–50. Boca Raton: CRC Press.Google Scholar
  33. Greenacre, M. 2005. Weighted metric multidimensional scaling. In New developments in classification and data analysis, ed. M. Vichi, P. Monari, S. Mignani, and A. Montanari, 141–150. Berlin: Springer.Google Scholar
  34. Greenacre, M. 2006. From simple to multiple correspondence analysis. In Multiple correspondence analysis and related methods, ed. M. Greenacre and J. Blasius, 41–76. Boca Raton: Chapman and Hall.Google Scholar
  35. Greenacre, M., and O. Nenadić. 2007. ca: Simple, multiple and joint correspondence analysis. R package version 0.21.
  36. Grimmer, J., and B. M. Stewart. 2013. Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis 21 (3): 298–313.Google Scholar
  37. Grün, B., and K. Hornik. 2011. topicmodels: An R package for fitting topic models. Journal of Statistical Software 40 (13): 1–30.Google Scholar
  38. Guérin-Pace, F. 1998. Textual statistics: An exploratory tool for the social sciences. Population: An English selection 10 (1): 73–95.Google Scholar
  39. Hofmann, T. 1999. Probabilistic latent semantic indexing. Proceedings of the twenty-second annual international SIGIR conference on research and development in information retrieval.Google Scholar
  40. Huang, A. 2008. Similarity measures for text document clustering. In New Zealand Computer Science Research Student Conference (NZCSRSC), ed. J. Holland, A. Nicholas, and D. Brignoli, Christchurch (NZ).Google Scholar
  41. Jakulin, A. 2007. Analysis of legal and political data. In Trends in legal knowledge—the semantic web and the regulation of electronic social systems, ed. P. Casanovas, P. Noriega, D. Bourcier, and F. Galindo, 213–226. Granada: European Press Academic Publishing.Google Scholar
  42. Jakulin, A., and W. Buntine. 2004. Applying discrete PCA in data analysis. In Proceedings of the twentieth conference on uncertainty in artificial intelligence, ed. C. Meek and J. Halpern. Arlington: AUAI Press.Google Scholar
  43. Jaworska, N., and A. Chupetlovska-Anastasova. 2009. A review of multidimensional scaling (MDS) and its utility in various psychological domains. Tutorials in Quantitative Methods for Psychology 5 (1): 1–10.Google Scholar
  44. Jones, B. D., and F. R. Baumgartner. 2012. From there to here: Punctuated equilibrium to the general punctuation thesis to a theory of government information processing. Policy Studies Journal 40:1–19.Google Scholar
  45. Jurafsky, D., and J. H. Martin. 2008. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. 2nd ed. Englewood Cliffs: Pearson Prentice Hall.Google Scholar
  46. Klein, G. A., and R. Calderwood. 1991. Decision models: Some lessons from the field. IEEE Transactions on Systems, Man, and Cybernetics 21 (5): 1018–1026.Google Scholar
  47. Klingemann, H.-D., A. Volkens, J. L. Bara, I. Budge, and M. McDonald. 2006. Mapping policy preferences II: Estimates for parties, electors, and governments in Eastern Europe, European Union, and OECD 1990–2003. Oxford: Oxford University Press.Google Scholar
  48. Klüver, H. 2009. Measuring interest group influence using quantitative text analysis. European Union Politics 10:535–549.Google Scholar
  49. Korenius, T., J. Laurikkala, K. Järvelin, and M. Juhola. 2004. Stemming and lemmatization in the clustering of Finnish text documents. In Proceedings of the thirteenth ACM conference on information and knowledge management, ed. D. A. Evans, L. Gravano, O. Herzog, C.-X. Zhai, and M. Ronthaler, 625–633. New York: ACM Press.Google Scholar
  50. Krippendorff, K. 2004. Content analysis: An introduction to its methodology. 2nd ed. Thousand Oaks: Sage.Google Scholar
  51. Lanzara, G. F. 1999. Between transient constructs and persistent structures: Designing systems in action. Journal of Strategic Information Systems 8:331–349.Google Scholar
  52. Lapalut, S. 1995. Text clustering to support knowledge acquisition from documents. Rapport de recherche 2639, Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis (France).Google Scholar
  53. Lasswell, H., N. Leites, R. Fadner, J. M. Goldsen, A. Grey, I. L. Janis, A. Kaplan, D. Kaplan, A. Mintz, I. De Sola Pool, and S. Yakobson. 1949. Language of politics: Studies of quantitative semantics. Cambridge: MIT Press.Google Scholar
  54. Lauderdale, B. E., and T. S. Clark. 2012. Scaling politically meaningful dimensions using texts and votes. In 7th annual conference on empirical legal studies.Google Scholar
  55. Lebart, L., and A. Salem. 1988. Analyse statistique des données textuelles. Paris: Dunod.Google Scholar
  56. Manning, C. D., and H. Schütze. 1999. Foundations of statistical natural language processing. Cambridge: MIT Press.Google Scholar
  57. Manning, C. D., P. Raghavan, and H. Schütze 2008. Introduction to information retrieval. Cambridge: Cambridge University Press.Google Scholar
  58. March, J. G. 1981. Footnotes to organizational change. Administrative Science Quarterly 26:563–577.Google Scholar
  59. March, J. G., and H. A. Simon. 1958. Organizations. New york: Wiley.Google Scholar
  60. Marques de Sá, J. P. 2007. Applied statistics using SPSS, STATISTICA, MATLAB, and R. 2nd ed. Berlin: Springer.Google Scholar
  61. Mimno, D. 2012a. Computational historiography: Data mining in a century of classics journals. Journal on Computing and Cultural Heritage 5 (1): Article 3.Google Scholar
  62. Mimno, D. 2012b. Reconstructing pompeian households. Computing Research Repository abs/1202.3747.Google Scholar
  63. Moens, M.-F. 2001. Innovative techniques for legal text retrieval. Artificial Intelligence and Law 9:29–57.Google Scholar
  64. Mooi, E., and M. Sarstedt. 2011. Cluster analysis. In A concise guide to market research, eds. M. Sarstedt and E. Mooi, 237–284. Berlin: Springer-Verlag.Google Scholar
  65. Morin, A. 2006. Intensive use of factorial correspondence analysis for text mining: Application with statistical education publications. Proceedings of the 7th international conference on teaching statistics, ICOTS, Salvador, Bahia, Brazil.Google Scholar
  66. Murtagh, F. 2005. Correspondence analysis and data coding with Java and R. Boca Raton: Chapman and Hall.Google Scholar
  67. Neuendorf, K. A. 2002. The content analysis guidebook. Thousand Oaks: Sage.Google Scholar
  68. Oksanen, J., F. Guillaume-Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2013. vegan: Community ecology package. R package version 2.0-8.Google Scholar
  69. Paukkeri, M. S. 2012. Language- and domain-independent text mining. PhD dissertation, Department of Information and Computer Science, Aalto University, Finland.Google Scholar
  70. Percellar-Giménez, E. 2000. El procedimiento de internamiento por razón de trastorno psíquico. Noticias Jurídicas.Google Scholar
  71. Porter, M. F. 1980. An algorithm for suffix stripping. Program 14 (3): 130–137.CrossRefGoogle Scholar
  72. Proksch, S.-O., and J. B. Slapin. 2009. WORDFISH: Scaling software for estimating political positions from Text (version 1.3). Accessed 10 August 2014.
  73. Quinn, G. P., and M. J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.Google Scholar
  74. R Core Team. 2013. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  75. Reinert, M. 1985. Classification descendante hierarchique: un algorithme pour le traitement des tableaux logiques de grandes dimensions. Paris: INRIA.Google Scholar
  76. Reinert, M. 1987. Un logiciel d’analyse de données textuelles ALCESTE. Paris: INRIA.Google Scholar
  77. Reinert, M. 2000. La tresse du sens et la méthode alceste: Application aux “rêveries du promeneur solitaire”. In JADT 2000. 5es Journées Internationales d’Analyse Statistique des Données Textuelles.Google Scholar
  78. Royer, I., and A. Langley. 2008. Linking rationality, politics, and routines in organizational decision making. In The Oxford handbook of organizational decision making, ed. G. P. Hodgkinson and W. H. Starbuck, 250–270. New York: Oxford University Press.Google Scholar
  79. Salton, G., A. Wong, and C. S. Yang. 1975. A vector space model for automatic indexing. Communications of the Association for Computing Machinery 18 (11): 613–620.Google Scholar
  80. Sandhya, N., and A. Govardhan. 2012. Analysis of similarity measures with wordnet based text document clustering. In Proceedings of the InConINDIA 2012, ed. S. C. Satapahy, P. S. Avadhani, and A. Abraham. Berlin: AISC.Google Scholar
  81. Schonhardt-Bailey, C. 2005. Measuring ideas more effectively: An analysis of bush and kerry’s national security speeches. PS: Political Science and Politics 38 (4): 701–711.Google Scholar
  82. Schonhardt-Bailey, C. 2008. The congressional debate on partial-birth abortion: Constitutional gravitas and moral passion. British Journal of Political Science 38:383–410.Google Scholar
  83. Sementko, H. A., and P. M. Valkenburg. 2000. Framing european politics: A content analysis of press and television news. Journal of Communication Spring:93–109.Google Scholar
  84. Simon, H. A. 1997. Administrative behavior: A study of decision-making processes in administrative organizations. 4th ed. New York: The Free Press.Google Scholar
  85. Solka, J. L. 2008. Text data mining: Theory and methods. Statistics Surveys 2:94–112.Google Scholar
  86. Srivastava, A. N., and M. Sahami, eds. 2009. Text mining. Classification, clustering, and application. Boca Raton: CRC Press.Google Scholar
  87. Steyvers, M., and T. Griffiths. 2007. Probabilistic topic models. In Latent semantic analysis: A road to meaning, ed. T. Landauer, D McNamara, S. Dennis and W. Kintsch, Mahwah: Laurence Erlbaum.Google Scholar
  88. Vallbé, J.-J. 2012. Autonomía y organización en el sistema judicial español. In Sistema político español, ed. Josep M. Reniu, Huygens Editorial.Google Scholar
  89. Vallbé, J.-J., and M. A. Martí. 2009. Stemming y lematización: técnicas de procesamiento del lenguaje para el análisis del discurso del conocimineto profesional del juez. In Web Semántica y ontologías jurídicas. Aplicaciones para el derecho en la nueva generación de la red, ed. P. Casanovas, J.-J. Vallbé, M. Fernández-Barrera, and V. R. Benjamins. Comares, Forthcoming.Google Scholar
  90. Vallbé, J.-J., Martí, M. A., Fortuna, B., Jakulin, A., Mladenič, D., and P. Casanovas. 2007. Stemming and lemmatisation: Improving knowledge management through language processing techniques. In Trends in legal knowledge—the semantic web and the regulation of electronic social systems, ed. P. Casanovas, P. Noriega, D. Bourcier, and F. Galindo, pp. 227–242. Granada: European Press Academic Publishing.Google Scholar
  91. Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58:236–244.Google Scholar
  92. Witherspoon, D. J., S. Wooding, A. Rogers, E. Marchani, W. Watkins, M. Batzer, and L. Jorde. 2007. Genetic similarities within and between human populations. Genetics 176 (1): 351–359.Google Scholar
  93. Young, L., and S. Soroka. 2012. Affective news: The automated coding of sentiment in political texts. Political Communication 29:205–231.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Constitutional Law and Political ScienceUniversity of BarcelonaBarcelonaSpain

Personalised recommendations