Skip to main content

Senescence in Oncogenesis: From Molecular Mechanisms to Therapeutic Opportunities

  • Chapter
  • First Online:
Stress Response Pathways in Cancer

Abstract

Somatic non stem cells show a spontaneous decline in growth rate in continuous culture related to an increasing number of population doublings, eventually terminating in a quiescent but viable state now known as replicative senescence. These cells show clear and distinctive morphological, physiological and biochemical characteristics. Moreover, the senescent phenotype is associated with a typical gene-expression profile. Similar behaviour has since then been observed in a wide variety of normal cells, and it is now widely accepted that normal somatic cells have an intrinsically limited proliferative lifespan, even under ideal growth conditions. Cells displaying characteristics of senescent cells, however, can be also observed in response to other stimuli, such as oncogenic stress, DNA damage or cytotoxic drugs. These non-proliferative characteristics prompted the scientists to look for therapies that can induce the senescent phenotype in tumor cells as therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci 3:d250–d268

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Antoch MP, Blagosklonny MV (2010) Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 176:2092–2097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Artandi SE, DePinho RA (2000) Mice without telomerase: what can they teach us about human cancer? Nat Med 6:852–855

    CAS  PubMed  Google Scholar 

  • Ashcroft M, Taya Y, Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20:3224–3233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ball KL, Lain S, Fahraeus R, Smythe C, Lane DP (1997) Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr Biol 7:71–80

    CAS  PubMed  Google Scholar 

  • Barrett JC, Annab LA, Alcorta D, Preston G, Vojta P, Yin Y (1994) Cellular senescence and cancer. Cold Spring Harb Symp Quant Biol 59:411–418

    CAS  PubMed  Google Scholar 

  • Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779

    CAS  PubMed  Google Scholar 

  • Bassaneze V, Miyakawa AA, Krieger JE (2013) Chemiluminescent detection of senescence-associated beta galactosidase. Methods Mol Biol 965:157–163

    PubMed  Google Scholar 

  • Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:794–802

    CAS  PubMed  Google Scholar 

  • Baylin SB, Belinsky SA, Herman JG (2000) Aberrant methylation of gene promoters in cancer – concepts, misconcepts, and promise. J Natl Cancer Inst 92:1460–1461

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7:3344–3354

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2009) TOR-driven aging: speeding car without brakes. Cell Cycle 8:4055–4059

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9:683–688

    CAS  PubMed  Google Scholar 

  • Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386

    CAS  PubMed  Google Scholar 

  • Blanco-Aparicio C, Canamero M, Cecilia Y, Pequeno B, Renner O, Ferrer I, Carnero A (2010) Exploring the gain of function contribution of AKT to mammary tumorigenesis in mouse models. PLoS ONE 5:e9305

    PubMed Central  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    CAS  PubMed  Google Scholar 

  • Blaydes JP, Wynford-Thomas D (1998) The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene 16:3317–3322

    CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    CAS  PubMed  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    CAS  PubMed  Google Scholar 

  • Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, Beach DH (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29:2262–2271

    CAS  PubMed  Google Scholar 

  • Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66:2881–2884

    CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    CAS  PubMed  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Berns K, Hijmans EM, Mullenders J, Fabius A, Heimerikx M, Velds A, Kerkhoven RM, Madiredjo M, Bernards R, Beijersbergen RL (2004) Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb Symp Quant Biol 69:439–445

    CAS  PubMed  Google Scholar 

  • Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    CAS  PubMed  Google Scholar 

  • Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnero A (2002) Targeting the cell cycle for cancer therapy. Br J Cancer 87:129–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnero A (2010) The PKB/AKT pathway in cancer. Curr Pharm Des 16:34–44

    CAS  PubMed  Google Scholar 

  • Carnero A, Beach DH (2004) Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23:6006–6011

    CAS  PubMed  Google Scholar 

  • Carnero A, Hannon GJ (1998) The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol 227:43–55

    CAS  PubMed  Google Scholar 

  • Carnero A, Lleonart ME (2010) Epigenetic mechanisms in senescence, immortalisation and cancer. Biol Rev Camb Philos Soc

    Google Scholar 

  • Carnero A, Lleonart ME (2011) Biol Rev Camb Philos Soc 86(2):443–455

    Google Scholar 

  • Carnero A, Hudson JD, Hannon GJ, Beach DH (2000a) Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res 28:2234–2241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carnero A, Hudson JD, Price CM, Beach DH (2000b) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2:148–155

    CAS  PubMed  Google Scholar 

  • Carnero A, Link W, Martinez JF, Renner O, Castro ME, Blanco F et al (2003) Cellular senescence and cancer. Res Adv Cancer 3:183–198

    Google Scholar 

  • Carter TL, Watt PM, Kumar R, Burton PR, Reaman GH, Sather HN, Baker DL, Kees UR (2001) Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse. Blood 97:572–574

    CAS  PubMed  Google Scholar 

  • Castro P, Giri D, Lamb D, Ittmann M (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55:30–38

    CAS  PubMed  Google Scholar 

  • Castro ME, Ferrer I, Cascon A, Guijarro MV, Lleonart M, Cajal SR, Leal JF, Robledo M, Carnero A (2008a) PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 29:491–499

    CAS  PubMed  Google Scholar 

  • Castro ME, Ferrer I, Cascon A, Guijarro MV, Lleonart M, Ramon y Cajal S, Leal JF, Robledo M, Carnero A (2008b) PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 29:491–499

    CAS  PubMed  Google Scholar 

  • Chandeck C, Mooi WJ (2010) Oncogene-induced cellular senescence. Adv Anat Pathol 17:42–48

    CAS  PubMed  Google Scholar 

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999a) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  • Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB (1999b) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808–4818

    CAS  PubMed  Google Scholar 

  • Chen QM (2000) Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann N Y Acad Sci 908:111–125

    CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Yusuf I, Andersen HM, Fruman DA (2006) FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes. J Immunol 176:2711–2721

    CAS  PubMed  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    CAS  PubMed  Google Scholar 

  • Cho WJ, Shin JM, Kim JS, Lee MR, Hong KS, Lee JH, Koo KH, Park JW, Kim KS (2009) miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 28:521–527

    CAS  PubMed  Google Scholar 

  • Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17:236–245

    CAS  PubMed  Google Scholar 

  • Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476

    CAS  PubMed  Google Scholar 

  • Collado M, Medema RH, Garcia-Cao I, Dubuisson ML, Barradas M, Glassford J, Rivas C, Burgering BM, Serrano M, Lam EW (2000) Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 275:21960–21968

    CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    CAS  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    CAS  PubMed  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010a) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour CM, Parrinello S, Hodgson JG, Chin K, Desprez PY, Campisi J (2010b) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 5:e9188

    PubMed Central  PubMed  Google Scholar 

  • Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27:2801–2809

    CAS  PubMed  Google Scholar 

  • d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    PubMed  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    PubMed  Google Scholar 

  • Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283

    PubMed Central  PubMed  Google Scholar 

  • de la Rosa J, Freije JM, Cabanillas R, Osorio FG, Fraga MF, Fernandez-Garcia MS, Rad R, Fanjul V, Ugalde AP, Liang Q, Prosser HM, Bradley A, Cadinanos J, Lopez-Otin C (2013) Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat Commun 4:2268

    PubMed Central  PubMed  Google Scholar 

  • Demidenko ZN, Blagosklonny MV (2008) Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7:3355–3361

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27:222–224

    PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    PubMed  Google Scholar 

  • Duncan EL, Whitaker NJ, Moy EL, Reddel RR (1993) Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp Cell Res 205:337–344

    CAS  PubMed  Google Scholar 

  • Elenitoba-Johnson KS, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M (1998) Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood 91:4677–4685

    CAS  PubMed  Google Scholar 

  • Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-Cook CK, Gewirtz DA, Holt SE (2002) Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 277:35509–35515

    CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feliciano A, Sanchez-Sendra B, Kondoh H, Lleonart ME (2011) MicroRNAs regulate key effector pathways of senescence. J Aging Res 2011, 205378

    PubMed Central  PubMed  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ, Lowe SW (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22:3497–3508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, Shaik MN, Wilner KD, O’Dwyer PJ, Schwartz GK (2012) Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res 18:568–576

    CAS  PubMed  Google Scholar 

  • Fridman AL, Rosati R, Li Q, Tainsky MA (2007) Epigenetic and functional analysis of IGFBP3 and IGFBPrP1 in cellular immortalization. Biochem Biophys Res Commun 357:785–791

    CAS  PubMed  Google Scholar 

  • Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T, Liso A, Diverio D, Mancini M, Meloni G, Foa R, Martelli MF, Mecucci C, Croce CM, Falini B (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105:3945–3950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gasparovic AC, Jaganjac M, Mihaljevic B, Sunjic SB, Zarkovic N (2013) Assays for the measurement of lipid peroxidation. Methods Mol Biol 965:283–296

    PubMed  Google Scholar 

  • Gil J, Kerai P, Lleonart M, Bernard D, Cigudosa JC, Peters G, Carnero A, Beach D (2005) Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res 65:2179–2185

    CAS  PubMed  Google Scholar 

  • Gire V, Roux P, Wynford-Thomas D, Brondello JM, Dulic V (2004) DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 23:2554–2563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21:1299–1303

    CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A (2008) FOXO transcription factors in ageing and cancer. Acta Physiol (Oxf) 192:19–28

    CAS  Google Scholar 

  • Haferkamp S, Tran SL, Becker TM, Scurr LL, Kefford RF, Rizos H (2009) The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging (Albany NY) 1:542–556

    CAS  Google Scholar 

  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5:1164–1170

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Haq R, Brenton JD, Takahashi M, Finan D, Finkielsztein A, Damaraju S, Rottapel R, Zanke B (2002) Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res 62:5076–5082

    CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    CAS  PubMed  Google Scholar 

  • Hewitt G, von Zglinicki T, Passos JF (2013) Cell sorting of young and senescent cells. Methods Mol Biol 1048:31–47

    PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25:7423–7431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holt SE, Wright WE, Shay JW (1997) Multiple pathways for the regulation of telomerase activity. Eur J Cancer 33:761–766

    CAS  PubMed  Google Scholar 

  • Itahana K, Itahana Y, Dimri GP (2013) Colorimetric detection of senescence-associated beta galactosidase. Methods Mol Biol 965:143–156

    PubMed Central  PubMed  Google Scholar 

  • Jarrard DF, Sarkar S, Shi Y, Yeager TR, Magrane G, Kinoshita H, Nassif N, Meisner L, Newton MA, Waldman FM, Reznikoff CA (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59:2957–2964

    CAS  PubMed  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659

    CAS  PubMed  Google Scholar 

  • Kenyon J, Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res 35:7557–7565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    CAS  PubMed  Google Scholar 

  • Kipling D, Wynford-Thomas D, Jones CJ, Akbar A, Aspinall R, Bacchetti S, Blasco MA, Broccoli D, DePinho RA, Edwards DR, Effros RB, Harley CB, Lansdorp PM, Linskens MH, Prowse KR, Newbold RF, Olovnikov AM, Parkinson EK, Pawelec G, Ponten J, Shall S, Zijlmans M, Faragher RG (1999) Telomere-dependent senescence. Nat Biotechnol 17:313–314

    CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    CAS  PubMed  Google Scholar 

  • Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV (2010) The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2:344–352

    CAS  Google Scholar 

  • Kortlever RM, Bernards R (2006) Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle 5:2697–2703

    CAS  PubMed  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86

    CAS  PubMed  Google Scholar 

  • Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kyoung Kim H, Kyoung Kim Y, Song IH, Baek SH, Lee SR, Hye Kim J, Kim JR (2005) Down-regulation of a forkhead transcription factor, FOXO3a, accelerates cellular senescence in human dermal fibroblasts. J Gerontol A Biol Sci Med Sci 60:4–9

    PubMed  Google Scholar 

  • Lacal J, Carnero A (1994) Regulation of ras proteins and their involvement in signal-transduction pathways (review). Oncol Rep 1:677–693

    CAS  PubMed  Google Scholar 

  • Lazzerini Denchi E, Attwooll C, Pasini D, Helin K (2005) Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25:2660–2672

    PubMed  Google Scholar 

  • Leal JF, Ferrer I, Blanco-Aparicio C, Hernandez-Losa J, Ramon YCS, Carnero A, Lleonart ME (2008a) S-adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis. Carcinogenesis 29:2089–2095

    CAS  PubMed  Google Scholar 

  • Leal JF, Fominaya J, Cascon A, Guijarro MV, Blanco-Aparicio C, Lleonart M, Castro ME, Ramon YCS, Robledo M, Beach DH, Carnero A (2008b) Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene 27:1961–1970

    CAS  PubMed  Google Scholar 

  • Leal JA, Feliciano A, Lleonart ME (2013) Stem cell microRNAs in senescence and immortalization: novel players in cancer therapy. Med Res Rev 33(1):112–138

    CAS  PubMed  Google Scholar 

  • LL ME, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M, Lopez-Vicente L, Kondoh H, Blanco C, Carnero A, Ramon y Cajal S (2006) New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16:603–608

    Google Scholar 

  • Lodygin D, Menssen A, Hermeking H (2002) Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner. J Clin Invest 110:1717–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenzini A, Tresini M, Mawal-Dewan M, Frisoni L, Zhang H, Allen RG, Sell C, Cristofalo VJ (2002) Role of the Raf/MEK/ERK and the PI3K/Akt(PKB) pathways in fibroblast senescence. Exp Gerontol 37:1149–1156

    CAS  PubMed  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    CAS  PubMed  Google Scholar 

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    CAS  PubMed  Google Scholar 

  • Maloney KW, McGavran L, Odom LF, Hunger SP (1999) Acquisition of p16(INK4A) and p15(INK4B) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood 93:2380–2385

    CAS  PubMed  Google Scholar 

  • Malumbres M, Carnero A (2003) Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res 5:5–18

    PubMed  Google Scholar 

  • Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M, Abdelmohsen K (2010) MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2:333–343

    CAS  Google Scholar 

  • Marciniak R, Guarente L (2001) Human genetics. Testing telomerase. Nature 413:370–371, 373

    CAS  PubMed  Google Scholar 

  • Maritz MF, Richards LA, Mackenzie KL (2013) Assessment and quantification of telomerase enzyme activity. Methods Mol Biol 965:215–231

    PubMed  Google Scholar 

  • Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A 108:522–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Gac L, Alvarez B, Garcia Z, Marques M, Arrizabalaga M, Carrera AC (2004) Phosphoinositide 3-kinase and forkhead, a switch for cell division. Biochem Soc Trans 32:360–361

    CAS  PubMed  Google Scholar 

  • Mason DX, Jackson TJ, Lin AW (2004) Molecular signature of oncogenic ras-induced senescence. Oncogene 23:9238–9246

    CAS  PubMed  Google Scholar 

  • McConnell BB, Starborg M, Brookes S, Peters G (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 8:351–354

    CAS  PubMed  Google Scholar 

  • Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS (2008) BRAF(E600) in benign and malignant human tumours. Oncogene 27:877–895

    CAS  PubMed  Google Scholar 

  • Michishita E, Nakabayashi K, Suzuki T, Kaul SC, Ogino H, Fujii M, Mitsui Y, Ayusawa D (1999) 5-bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem 126:1052–1059

    CAS  PubMed  Google Scholar 

  • Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17:1583–1592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mooi WJ, Peeper DS (2006) Oncogene-induced cell senescence–halting on the road to cancer. N Engl J Med 355:1037–1046

    CAS  PubMed  Google Scholar 

  • Mulligan G, Jacks T (1998) The retinoblastoma gene family: cousins with overlapping interests. Trends Genet 14:223–229

    CAS  PubMed  Google Scholar 

  • Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    CAS  PubMed  Google Scholar 

  • Narita M, Lowe SW (2004) Executing cell senescence. Cell Cycle 3:244–246

    CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    CAS  PubMed  Google Scholar 

  • Nelson G, von Zglinicki T (2013) Monitoring DNA damage during cell senescence. Methods Mol Biol 965:197–213

    PubMed  Google Scholar 

  • Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724

    CAS  PubMed  Google Scholar 

  • Noonan EJ, Place RF, Basak S, Pookot D, Li LC (2010) miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1:349–358

    PubMed Central  PubMed  Google Scholar 

  • Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Greenblatt MS, Serrano M et al (1994) p16INK4 mutations and altered expression in human tumors and cell lines. Cold Spring Harb Symp Quant Biol 59:49–57

    CAS  PubMed  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    CAS  PubMed  Google Scholar 

  • Palmero I, McConnell B, Parry D, Brookes S, Hara E, Bates S, Jat P, Peters G (1997) Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status. Oncogene 15:495–503

    CAS  PubMed  Google Scholar 

  • Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18:4974–4982

    CAS  PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    CAS  PubMed  Google Scholar 

  • Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496

    CAS  PubMed  Google Scholar 

  • Passos JF, Von Zglinicki T (2006) Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 40:1277–1283

    CAS  PubMed  Google Scholar 

  • Passos JF, Miwa S, von Zglinicki T (2013) Measuring reactive oxygen species in senescent cells. Methods Mol Biol 965:253–263

    PubMed  Google Scholar 

  • Pereira-Smith OM, Smith JR (1988) Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci U S A 85:6042–6046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pospelova TV, Chitikova ZV, Pospelov VA (2013) An integrated approach for monitoring cell senescence. Methods Mol Biol 965:383–408

    PubMed  Google Scholar 

  • Renner O, Carnero A (2009) Mouse models to decipher the PI3K signaling network in human cancer. Curr Mol Med 9:612–625

    CAS  PubMed  Google Scholar 

  • Renner O, Blanco-Aparicio C, Grassow M, Canamero M, Leal JF, Carnero A (2008) Activation of phosphatidylinositol 3-kinase by membrane localization of p110alpha predisposes mammary glands to neoplastic transformation. Cancer Res 68:9643–9653

    CAS  PubMed  Google Scholar 

  • Roberts PJ, Bisi JE, Strum JC, Combest AJ, Darr DB, Usary JE, Zamboni WC, Wong KK, Perou CM, Sharpless NE (2012) Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst 104:476–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodier F (2013) Detection of the senescence-associated secretory phenotype (SASP). Methods Mol Biol 965:165–173

    PubMed  Google Scholar 

  • Roninson IB (2002) Tumor senescence as a determinant of drug response in vivo. Drug Resist Updat 5:204–208

    CAS  PubMed  Google Scholar 

  • Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    CAS  PubMed  Google Scholar 

  • Roninson IB, Dokmanovic M (2003) Induction of senescence-associated growth inhibitors in the tumor-suppressive function of retinoids. J Cell Biochem 88:83–94

    CAS  PubMed  Google Scholar 

  • Rubin H (2002) The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 20:675–681

    CAS  PubMed  Google Scholar 

  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712

    CAS  PubMed  Google Scholar 

  • Ruiz L, Traskine M, Ferrer I, Castro E, Leal JF, Kaufman M, Carnero A (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS ONE 3:e3230

    PubMed Central  PubMed  Google Scholar 

  • Russo I, Silver AR, Cuthbert AP, Griffin DK, Trott DA, Newbold RF (1998) A telomere-independent senescence mechanism is the sole barrier to Syrian hamster cell immortalization. Oncogene 17:3417–3426

    CAS  PubMed  Google Scholar 

  • Ruzankina Y, Asare A, Brown EJ (2008) Replicative stress, stem cells and aging. Mech Ageing Dev 129:460–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775:5–20

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    CAS  PubMed  Google Scholar 

  • Schwarze SR, Fu VX, Desotelle JA, Kenowski ML, Jarrard DF (2005) The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7:816–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13:748–753

    CAS  PubMed  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    CAS  PubMed  Google Scholar 

  • Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    CAS  PubMed  Google Scholar 

  • Shibanuma M, Mochizuki E, Maniwa R, Mashimo J, Nishiya N, Imai S, Takano T, Oshimura M, Nose K (1997) Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts. Mol Cell Biol 17:1224–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67

    CAS  PubMed  Google Scholar 

  • Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130

    CAS  PubMed  Google Scholar 

  • Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104:15472–15477

    CAS  PubMed Central  PubMed  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  • Thomas E, al-Baker E, Dropcova S, Denyer S, Ostad N, Lloyd A, Kill IR, Faragher RG (1997) Different kinetics of senescence in human fibroblasts and peritoneal mesothelial cells. Exp Cell Res 236:355–358

    CAS  PubMed  Google Scholar 

  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441:523–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Untergasser G, Koch HB, Menssen A, Hermeking H (2002) Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res 62:6255–6262

    CAS  PubMed  Google Scholar 

  • Vergel M, Carnero A (2010) Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol 12:410–417

    PubMed  Google Scholar 

  • Vergel M, Marin JJ, Estevez P, Carnero A (2010) Cellular senescence as a target in cancer control. J Aging Res 2011:725365

    PubMed Central  PubMed  Google Scholar 

  • Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47(Suppl 1):3–27

    CAS  PubMed  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181

    CAS  PubMed  Google Scholar 

  • Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I (2006) Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107:2680–2685

    CAS  PubMed  Google Scholar 

  • Wang J, Xie LY, Allan S, Beach D, Hannon GJ (1998a) Myc activates telomerase. Genes Dev 12:1769–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wong SC, Pan J, Tsao SW, Fung KH, Kwong DL, Sham JS, Nicholls JM (1998b) Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res 58:5019–5022

    CAS  PubMed  Google Scholar 

  • Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22:3389–3403

    PubMed Central  PubMed  Google Scholar 

  • Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM (2000) Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J 19:5762–5771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright WE, Shay JW (1995) Time, telomeres and tumours: is cellular senescence more than an anticancer mechanism? Trends Cell Biol 5:293–297

    CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    CAS  PubMed  Google Scholar 

  • Wynford-Thomas D (1996) p53: guardian of cellular senescence. J Pathol 180:118–121

    CAS  PubMed  Google Scholar 

  • Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD (2007) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2452–2465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo EJ, Hwang YC, Kang CM, Kim IH, Kim DI, Parka JS, Choy HE, Park WY, Park SC (2000) Senescence-like changes induced by hydroxyurea in human diploid fibroblasts. Exp Gerontol 35:553–571

    CAS  PubMed  Google Scholar 

  • Young AR, Narita M (2013) Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol 965:1–13

    PubMed  Google Scholar 

  • Zanella F, Link W, Carnero A (2010) Understanding FOXO, new views on old transcription factors. Curr Cancer Drug Targets 10:135–146

    CAS  PubMed  Google Scholar 

  • Zhang H, Cohen SN (2004) Smurf2 up-regulation activates telomere-dependent senescence. Genes Dev 18:3028–3040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (1999) Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13:2388–2399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Pan KH, Cohen SN (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 100:3251–3256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Ji W, Yang J, Yang L, Chen W, Zhuang Z (2008) Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci 83:475–480

    CAS  PubMed  Google Scholar 

  • Zhao H, Darzynkiewicz Z (2013) Biomarkers of cell senescence assessed by imaging cytometry. Methods Mol Biol 965:83–92

    PubMed Central  PubMed  Google Scholar 

  • Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, Sotomayor E, Tao J, Cheng JQ (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115:2630–2639

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

AC lab is supported by grants to from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028), Consejeria de Ciencia e InnovaciĂłn (CTS-6844 and CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0135-2010 and PI-0306-2012). SM-G has been supported by a fellowship Juan de la Cierva from the Spanish Ministry of Economy and Competitivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amancio Carnero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muñoz-Galvan, S., Carnero, A. (2015). Senescence in Oncogenesis: From Molecular Mechanisms to Therapeutic Opportunities. In: Wondrak, G. (eds) Stress Response Pathways in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9421-3_7

Download citation

Publish with us

Policies and ethics