Skip to main content

Melanomagenic Gene Alterations Viewed from a Redox Perspective: Molecular Mechanisms and Therapeutic Opportunities

  • Chapter
  • First Online:
Stress Response Pathways in Cancer

Abstract

The causative involvement of altered redox homeostasis and reactive oxygen species (ROS)-dependent signaling in the control of survival, proliferation, and invasiveness of cancer cells has recently emerged. A large body of experimental and epidemiological research has substantiated the causative involvement of specific genetic alterations in melanomagenesis. Strikingly, some of the proteins encoded by specific genes underlying melanomagenesis (CDKN2A, MC1R, MITF, KIT, NRAS, BRAF, AKT3, PTEN, RAC1, MAP3K5, KEAP1, MYC) assume mechanistic roles in the control of cellular redox signaling and oxidative stress, thereby fulfilling molecular functions relevant to suppression or promotion of tumorigenesis that reach beyond their canonical activities, a significant yet underappreciated phenomenon that may open avenues towards novel redox-directed chemotherapeutic interventions as discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aplin AE, Kaplan FM, Shao Y (2011) Mechanisms of resistance to RAF inhibitors in melanoma. J Invest Dermatol 131:1817–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basile KJ, Le K, Hartsough EJ, Aplin AE (2014) Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors. Pigment Cell Melanoma Res 27:479–484

    CAS  PubMed  Google Scholar 

  • Bedrick AE, Ramasamy G, Tchertkoff V (1991) Histochemical determinations of copper, zinc, and iron in pigmented nevi and melanoma. Am J Dermatopathol 13:575–578

    CAS  PubMed  Google Scholar 

  • Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, d’Hayer B, Mohamdi H, Remenieras A, Maubec E, de la Fouchardiere A, Molinie V, Vabres P, Dalle S, Poulalhon N, Martin-Denavit T, Thomas L, Andry-Benzaquen P, Dupin N, Boitier F, Rossi A, Perrot JL, Labeille B, Robert C, Escudier B, Caron O, Brugieres L, Saule S, Gardie B, Gad S, Richard S, Couturier J, Teh BT, Ghiorzo P, Pastorino L, Puig S, Badenas C, Olsson H, Ingvar C, Rouleau E, Lidereau R, Bahadoran P, Vielh P, Corda E, Blanche H, Zelenika D, Galan P, Aubin F, Bachollet B, Becuwe C, Berthet P, Bignon YJ, Bonadona V, Bonafe JL, Bonnet-Dupeyron MN, Cambazard F, Chevrant-Breton J, Coupier I, Dalac S, Demange L, d’Incan M, Dugast C, Faivre L, Vincent-Fetita L, Gauthier-Villars M, Gilbert B, Grange F, Grob JJ, Humbert P, Janin N, Joly P, Kerob D, Lasset C, Leroux D, Levang J, Limacher JM, Livideanu C, Longy M, Lortholary A, Stoppa-Lyonnet D, Mansard S, Mansuy L, Marrou K, Mateus C, Maugard C, Meyer N, Nogues C, Souteyrand P, Venat-Bouvet L, Zattara H, Chaudru V, Lenoir GM, Lathrop M, Davidson I, Avril MF, Demenais F, Ballotti R, Bressac-de Paillerets B (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480:94–98

    CAS  PubMed  Google Scholar 

  • Biroccio A, Benassi B, Amodei S, Gabellini C, Del Bufalo D, Zupi G (2001) c-Myc down-regulation increases susceptibility to cisplatin through reactive oxygen species-mediated apoptosis in M14 human melanoma cells. Mol Pharmacol 60:174–182

    CAS  PubMed  Google Scholar 

  • Block K, Gorin Y (2012) Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer 12:627–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brar SS, Kennedy TP, Whorton AR, Sturrock AB, Huecksteadt TP, Ghio AJ, Hoidal JR (2001) Reactive oxygen species from NAD(P)H:quinone oxidoreductase constitutively activate NF-kappaB in malignant melanoma cells. Am J Physiol Cell Physiol 280:C659–C676

    CAS  PubMed  Google Scholar 

  • Britten CD (2013) PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 71:1395–1409

    CAS  PubMed  Google Scholar 

  • Busca R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B, Thyss R, Fitsialos G, Larribere L, Bertolotto C, Virolle T, Barbry P, Pouyssegur J, Ponzio G, Ballotti R (2005) Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J Cell Biol 170:49–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabello CM, Bair WB 3rd, Bause AS, Wondrak GT (2009) Antimelanoma activity of the redox dye DCPIP (2,6-dichlorophenolindophenol) is antagonized by NQO1. Biochem Pharmacol 78:344–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabello CM, Lamore SD, Bair WB 3rd, Qiao S, Azimian S, Lesson JL, Wondrak GT (2012) The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs 30:1289–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chana JS, Grover R, Wilson GD, Hudson DA, Forders M, Sanders R, Grobbelaar AO (1998) The clinical significance of c-myc oncogene expression in melanomas of the scalp. Br J Plast Surg 51:191–194

    CAS  PubMed  Google Scholar 

  • Chana JS, Grover R, Wilson GD, Hudson DA, Forders M, Sanders R, Grobbelaar AO (2001) The prognostic importance of c-myc oncogene expression in head and neck melanoma. Ann Plast Surg 47:172–177

    CAS  PubMed  Google Scholar 

  • Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaturvedi D, Goswami A, Saikia PP, Barua NC, Rao PG (2010) Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev 39:435–454

    CAS  PubMed  Google Scholar 

  • Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H (2004) Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Exp Cell Res 300:297–307

    CAS  PubMed  Google Scholar 

  • Corazao-Rozas P, Guerreschi P, Jendoubi M, Andre F, Jonneaux A, Scalbert C, Garcon G, Malet-Martino M, Balayssac S, Rocchi S, Savina A, Formstecher P, Mortier L, Kluza J, Marchetti P (2013) Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget 4:1986–1998

    PubMed Central  PubMed  Google Scholar 

  • Dai DL, Martinka M, Li G (2005) Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23:1473–1482

    CAS  PubMed  Google Scholar 

  • Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, You MJ, DePinho RA, McMahon M, Bosenberg M (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41:544–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    CAS  PubMed  Google Scholar 

  • Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, Boggon TJ (2013) RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci U S A 110:912–917

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, Maertens O, Jeong SM, Bronson RT, Lebleu V, Kalluri R, Normant E, Haigis MC, Manning BD, Wong KK, Macleod KF, Cichowski K (2011) Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 20:400–413

    PubMed Central  PubMed  Google Scholar 

  • Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA (2014) Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 134:1512–1518

    CAS  PubMed  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari E, Lucca C, Foiani M (2010) A lethal combination for cancer cells: synthetic lethality screenings for drug discovery. Eur J Cancer 46:2889–2895

    PubMed  Google Scholar 

  • Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, Giordano S, Pani G, Galeotti T (2006) Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689–3698

    CAS  PubMed  Google Scholar 

  • Fried L, Arbiser JL (2008) The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell Melanoma Res 21:117–122

    CAS  PubMed  Google Scholar 

  • Fruehauf JP, Trapp V (2008) Reactive oxygen species: an Achilles’ heel of melanoma? Expert Rev Anticancer Ther 8:1751–1757

    CAS  PubMed  Google Scholar 

  • Gerami P, Jewell SS, Pouryazdanparast P, Wayne JD, Haghighat Z, Busam KJ, Rademaker A, Morrison L (2011) Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn 13:352–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    CAS  PubMed  Google Scholar 

  • Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ, Rodenburg RJ, Smeitink JA, Oberley L, Zhang Y, Slingerland J, Arnold RS, Lambeth JD, Cohen C, Hilenski L, Griendling K, Martinez-Diez M, Cuezva JM, Arbiser JL (2007) Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest 117:719–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, Singh KK (2010) NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 10:223–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grover R, Chana J, Grobbelaar AO, Hudson DA, Forder M, Wilson GD, Sanders R (1999) Measurement of c-myc oncogene expression provides an accurate prognostic marker for acral lentiginous melanoma. Br J Plast Surg 52:122–126

    CAS  PubMed  Google Scholar 

  • Habel ME, Jung D (2006) c-Myc over-expression in Ramos Burkitt’s lymphoma cell line predisposes to iron homeostasis disruption in vitro. Biochem Biophys Res Commun 341:1309–1316

    CAS  PubMed  Google Scholar 

  • Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, Wargo JA, Song JS, Fisher DE, Arany Z, Widlund HR (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23:302–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, Friedlander P, Gonzalez R, Weber JS, Gajewski TF, O’Day SJ, Kim KB, Lawrence D, Flaherty KT, Luke JJ, Collichio FA, Ernstoff MS, Heinrich MC, Beadling C, Zukotynski KA, Yap JT, Van den Abbeele AD, Demetri GD, Fisher DE (2013) Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 31:3182–3190

    CAS  PubMed  Google Scholar 

  • Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150:251–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, Bower J, Gogineni A, Zha J, Cole MJ, Stern HM, Murray LJ, Davis DP, Seshagiri S (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res 66:999–1006

    CAS  PubMed  Google Scholar 

  • Ibrahim N, Haluska FG (2009) Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu Rev Pathol 4:551–579

    CAS  PubMed  Google Scholar 

  • Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins NC, Liu T, Cassidy P, Leachman SA, Boucher KM, Goodson AG, Samadashwily G, Grossman D (2011) The p16(INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene 30:265–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins NC, Jung J, Liu T, Wilde M, Holmen SL, Grossman D (2013) Familial melanoma-associated mutations in p16 uncouple its tumor-suppressor functions. J Invest Dermatol 133:1043–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadekaro AL, Chen J, Yang J, Chen S, Jameson J, Swope VB, Cheng T, Kadakia M, Abdel-Malek Z (2012) Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Mol Cancer Res 10:778–786

    CAS  PubMed  Google Scholar 

  • Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, van der Burg SH, Verdegaal EM, Cascante M, Shlomi T, Gottlieb E, Peeper DS (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:109–112

    CAS  PubMed  Google Scholar 

  • Karimkhani C, Gonzalez R, Dellavalle RP (2014) A review of novel therapies for melanoma. Am J Clin Dermatol 15(4):323–337

    PubMed  Google Scholar 

  • Kawarazaki Y, Ichijo H, Naguro I (2014) Apoptosis signal-regulating kinase 1 as a therapeutic target. Expert Opin Ther Targets 18:651–664

    CAS  PubMed  Google Scholar 

  • Kim Y, Lee YS, Choe J, Lee H, Kim YM, Jeoung D (2008) CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem 283:22513–22528

    CAS  PubMed  Google Scholar 

  • Kodama R, Kato M, Furuta S, Ueno S, Zhang Y, Matsuno K, Yabe-Nishimura C, Tanaka E, Kamata T (2013) ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cells 18:32–41

    CAS  PubMed  Google Scholar 

  • Kudchadkar R, Paraiso KH, Smalley KS (2012) Targeting mutant BRAF in melanoma: current status and future development of combination therapy strategies. Cancer J 18:124–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunz M (2014) Oncogenes in melanoma: an update. Eur J Cell Biol 93:1–10

    CAS  PubMed  Google Scholar 

  • Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 101:16419–16424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwong LN, Davies MA (2013) Navigating the therapeutic complexity of PI3K pathway inhibition in melanoma. Clin Cancer Res 19:5310–5319

    CAS  PubMed  Google Scholar 

  • Lam CR, Tan MJ, Tan SH, Tang MB, Cheung PC, Tan NS (2011) TAK1 regulates SCF expression to modulate PKBalpha activity that protects keratinocytes from ROS-induced apoptosis. Cell Death Differ 18:1120–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JM (1998) Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene 17:1653–1662

    CAS  PubMed  Google Scholar 

  • Leikam C, Hufnagel A, Schartl M, Meierjohann S (2008) Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 27:7070–7082

    CAS  PubMed  Google Scholar 

  • Leikam C, Hufnagel A, Walz S, Kneitz S, Fekete A, Muller MJ, Eilers M, Schartl M, Meierjohann S (2014) Cystathionase mediates senescence evasion in melanocytes and melanoma cells. Oncogene 33:771–782

    CAS  PubMed  Google Scholar 

  • Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, Yao KM (2008) FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 283:16545–16553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Fu Y, Meyskens FL Jr (2009) MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. J Invest Dermatol 129:422–431

    CAS  PubMed  Google Scholar 

  • Liu F, Gomez Garcia AM, Meyskens FL Jr (2012a) NADPH oxidase 1 overexpression enhances invasion via matrix metalloproteinase-2 and epithelial-mesenchymal transition in melanoma cells. J Invest Dermatol 132:2033–2041

    CAS  PubMed  Google Scholar 

  • Liu GS, Peshavariya H, Higuchi M, Brewer AC, Chang CW, Chan EC, Dusting GJ (2012b) Microphthalmia-associated transcription factor modulates expression of NADPH oxidase type 4: a negative regulator of melanogenesis. Free Radic Biol Med 52:1835–1843

    CAS  PubMed  Google Scholar 

  • Liu-Smith F, Dellinger R, Meyskens FL (2014) Updates of reactive oxygen species in melanoma etiology and progression. Arch Biochem Biophys. doi:10.1016/j.abb.2014.04.007

  • Luke JJ, Hodi FS (2013) Ipilimumab, vemurafenib, dabrafenib, and trametinib: synergistic competitors in the clinical management of BRAF mutant malignant melanoma. Oncologist 18:717–725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marrot L, Jones C, Perez P, Meunier JR (2008) The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res 21:79–88

    CAS  PubMed  Google Scholar 

  • McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, Ribas A, Hogg D, Hamid O, Ascierto PA, Garbe C, Testori A, Maio M, Lorigan P, Lebbe C, Jouary T, Schadendorf D, O’Day SJ, Kirkwood JM, Eggermont AM, Dreno B, Sosman JA, Flaherty KT, Yin M, Caro I, Cheng S, Trunzer K, Hauschild A (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15:323–332

    CAS  PubMed  Google Scholar 

  • Meierjohann S (2014) Oxidative stress in melanocyte senescence and melanoma transformation. Eur J Cell Biol 93:36–41

    CAS  PubMed  Google Scholar 

  • Meyskens FL Jr, Buckmeier JA, McNulty SE, Tohidian NB (1999) Activation of nuclear factor-kappa B in human metastatic melanoma cells and the effect of oxidative stress. Clin Cancer Res 5:1197–1202

    CAS  PubMed  Google Scholar 

  • Meyskens FL Jr, Farmer P, Fruehauf JP (2001) Redox regulation in human melanocytes and melanoma. Pigment Cell Res 14:148–154

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    CAS  PubMed  Google Scholar 

  • Mikhail M, Velazquez E, Shapiro R, Berman R, Pavlick A, Sorhaindo L, Spira J, Mir C, Panageas KS, Polsky D, Osman I (2005) PTEN expression in melanoma: relationship with patient survival, Bcl-2 expression, and proliferation. Clin Cancer Res 11:5153–5157

    CAS  PubMed  Google Scholar 

  • Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, Robinson KC, Devi SP, Vanover JC, D’Orazio JA, McMahon M, Bosenberg MW, Haigis KM, Haber DA, Wang Y, Fisher DE (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuishi Y, Motohashi H, Yamamoto M (2012a) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200

    PubMed Central  PubMed  Google Scholar 

  • Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H (2012b) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79

    CAS  PubMed  Google Scholar 

  • Miura S, Shibazaki M, Kasai S, Yasuhira S, Watanabe A, Inoue T, Kageshita Y, Tsunoda K, Takahashi K, Akasaka T, Masuda T, Maesawa C (2014) A somatic mutation of the KEAP1 gene in malignant melanoma is involved in aberrant NRF2 activation and an increase in intrinsic drug resistance. J Invest Dermatol 134:553–556

    CAS  PubMed  Google Scholar 

  • Nadworny AS, Guruju MR, Poor D, Doran RM, Sharma RV, Kotlikoff MI, Davisson RL (2013) Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation. Am J Physiol Heart Circ Physiol 305:H829–H842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19:4309–4314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:884

    PubMed Central  PubMed  Google Scholar 

  • O’Day SJ, Eggermont AM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L, Robert C, Schachter J, Testori A, Mackiewicz J, Friedlander P, Garbe C, Ugurel S, Collichio F, Guo W, Lufkin J, Bahcall S, Vukovic V, Hauschild A (2013) Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol 31:1211–1218

    PubMed  Google Scholar 

  • O’Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A, Dang CV (2006) Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol 26:2373–2386

    PubMed Central  PubMed  Google Scholar 

  • Ostmeier H, Fuchs B, Otto F, Mawick R, Lippold A, Krieg V, Suter L (2001) Prognostic immunohistochemical markers of primary human melanomas. Br J Dermatol 145:203–209

    CAS  PubMed  Google Scholar 

  • Packer LM, East P, Reis-Filho JS, Marais R (2009) Identification of direct transcriptional targets of (V600E)BRAF/MEK signalling in melanoma. Pigment Cell Melanoma Res 22:785–798

    CAS  PubMed  Google Scholar 

  • Phung B, Sun J, Schepsky A, Steingrimsson E, Ronnstrand L (2011) C-KIT signaling depends on microphthalmia-associated transcription factor for effects on cell proliferation. PLoS One 6:e24064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pouryazdanparast P, Brenner A, Haghighat Z, Guitart J, Rademaker A, Gerami P (2012) The role of 8q24 copy number gains and c-MYC expression in amelanotic cutaneous melanoma. Mod Pathol 25(9):1221–1226

    CAS  PubMed  Google Scholar 

  • Prickett TD, Zerlanko B, Gartner JJ, Parker SC, Dutton-Regester K, Lin JC, Teer JK, Wei X, Jiang J, Chen G, Davies MA, Gershenwald JE, Robinson W, Robinson S, Hayward NK, Rosenberg SA, Margulies EH, Samuels Y (2014) Somatic mutations in MAP3K5 attenuate its proapoptotic function in melanoma through increased binding to thioredoxin. J Invest Dermatol 134:452–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao S, Cabello CM, Lamore SD, Lesson JL, Wondrak GT (2012a) D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis. Apoptosis 17:1079–1094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao S, Lamore SD, Cabello CM, Lesson JL, Munoz-Rodriguez JL, Wondrak GT (2012b) Thiostrepton is an inducer of oxidative and proteotoxic stress that impairs viability of human melanoma cells but not primary melanocytes. Biochem Pharmacol 83:1229–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao S, Tao S, Rojo de la Vega M, Park SL, Vonderfecht AA, Jacobs SL, Zhang DD, Wondrak GT (2013) The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death. Autophagy 9:2087–2102

    CAS  PubMed  Google Scholar 

  • Quast SA, Berger A, Eberle J (2013) ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis. Cell Death Dis 4:e839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramdzan ZM, Vadnais C, Pal R, Vandal G, Cadieux C, Leduy L, Davoudi S, Hulea L, Yao L, Karnezis AN, Paquet M, Dankort D, Nepveu A (2014) RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PLoS Biol 12:e1001807

    PubMed Central  PubMed  Google Scholar 

  • Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108:1433–1438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribeiro-Pereira C, Moraes JA, Souza Mde J, Laurindo FR, Arruda MA, Barja-Fidalgo C (2014) Redox Modulation of FAK Controls Melanoma Survival - Role of NOX4. PLoS One 9:e99481

    PubMed Central  PubMed  Google Scholar 

  • Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA, Barata JT (2008) PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 118:3762–3774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ (2004) Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 23:9369–9380

    CAS  PubMed  Google Scholar 

  • Smalley KS, Sondak VK, Weber JS (2009) c-KIT signaling as the driving oncogenic event in sub-groups of melanomas. Histol Histopathol 24:643–650

    CAS  PubMed  Google Scholar 

  • Soga M, Matsuzawa A, Ichijo H (2012) Oxidative stress-induced diseases via the ASK1 signaling pathway. Int J Cell Biol 2012:439587

    PubMed Central  PubMed  Google Scholar 

  • Soyer HP, Smolle J, Torne R, Kerl H (1987) Transferrin receptor expression in normal skin and in various cutaneous tumors. J Cutan Pathol 14:1–5

    CAS  PubMed  Google Scholar 

  • Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG, Chow D, Sereduk C, Niemi NM, Tang N, Ellis JJ, Reid J, Zismann V, Tyagi S, Muzny D, Newsham I, Wu Y, Palmer JM, Pollak T, Youngkin D, Brooks BR, Lanagan C, Schmidt CW, Kobe B, MacKeigan JP, Yin H, Brown KM, Gibbs R, Trent J, Hayward NK (2012) Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet 44:165–169

    CAS  Google Scholar 

  • Theodosakis N, Micevic G, Kelly DP, Bosenberg M (2014) Mitochondrial function in melanoma. Arch Biochem Biophys. doi:10.1016/j.abb.2014.06.028

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    CAS  PubMed  Google Scholar 

  • Trapp V, Lee K, Donate F, Mazar AP, Fruehauf JP (2009) Redox-related antimelanoma activity of ATN-224. Melanoma Res 19:350–360

    CAS  PubMed  Google Scholar 

  • Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105:3041–3046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsao H, Chin L, Garraway LA, Fisher DE (2012) Melanoma: from mutations to medicine. Genes Dev 26:1131–1155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tulley PN, Neale M, Jackson D, Chana JS, Grover R, Cree I, Grobbelaar AO, Wilson GD (2004) The relation between c-myc expression and interferon sensitivity in uveal melanoma. Br J Ophthalmol 88:1563–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Muijen GN, Ruiter DJ, Hoefakker S, Johnson JP (1990) Monoclonal antibody PAL-M1 recognizes the transferrin receptor and is a progression marker in melanocytic lesions. J Invest Dermatol 95:65–69

    PubMed  Google Scholar 

  • Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, Clish CB, Granter SR, Widlund HR, Spiegelman BM, Puigserver P (2013) PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23:287–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM, Ajouaou A, Kortman PC, Dankort D, McMahon M, Mooi WJ, Peeper DS (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26:1055–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18

    CAS  PubMed  Google Scholar 

  • Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber JS, Samlowski WE, Gonzalez R, Ribas A, Stephenson J, O’Day S, Sato T, Dorr R, Grenier K, Hersh E (2010) A phase 1-2 study of imexon plus dacarbazine in patients with unresectable metastatic melanoma. Cancer 116:3683–3691

    CAS  PubMed  Google Scholar 

  • West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467:972–976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittgen HG, van Kempen LC (2007) Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Res 17:400–409

    CAS  PubMed  Google Scholar 

  • Wondrak GT (2007) NQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apoptosis. Free Radic Biol Med 43:178–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu KJ, Polack A, Dalla-Favera R (1999) Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283:676–679

    CAS  PubMed  Google Scholar 

  • Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A, Goto Y, Shang WH, Kubodera M, Kato M, Takata M, Saida T, Kamata T (2009) NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res 69:2647–2654

    CAS  PubMed  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R, Kolis S, Zhao S, Lee R, Grippo JF, Schostack K, Simcox ME, Heimbrook D, Bollag G, Su F (2010) RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 70:5518–5527

    CAS  PubMed  Google Scholar 

  • Zhang DD (2010) The Nrf2-Keap1-ARE signaling pathway: the regulation and dual function of Nrf2 in cancer. Antioxid Redox Signal 13:1623–1626

    CAS  PubMed  Google Scholar 

  • Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV, Soengas MS, Nikiforov MA (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg T. Wondrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wondrak, G.T. (2015). Melanomagenic Gene Alterations Viewed from a Redox Perspective: Molecular Mechanisms and Therapeutic Opportunities. In: Wondrak, G. (eds) Stress Response Pathways in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9421-3_13

Download citation

Publish with us

Policies and ethics