Skip to main content

Review: The Functions of Phytoliths in Land Plants

  • Chapter
  • First Online:

Part of the book series: Biologically-Inspired Systems ((BISY,volume 6))

Abstract

This chapter comprises a review on phytoliths in land plants. The review summarizes the occurence and role of phytoliths, including their appearance and potentially important functions in land plants, ranging from mechanics, reduction of climatic and chemical stresses, defence against herbivores and pathogenic fungi or germs, to growth promotion. The review ends with a short summary of the methods used for quantitative and qualitative detection, and a description of phytoliths in land plant tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarie S, Agata W, Uchida H, Kubota F, Kaufman PB (1996) Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. J Exp Bot 47:655–660

    Article  Google Scholar 

  • Blackman E (1968) The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Ann Bot 32:207–218

    Google Scholar 

  • Blackman E, Parry DW (1968) Opaline silica deposition in rye (Secale cereale L.). Ann Bot 32:199–206

    Google Scholar 

  • Blecher IC, Seidel R, Thomann R, Speck T (2012) Comparison of different methods for the detection of silica inclusions in plant tissues. Int J Plant Sci 173:1–11

    Article  Google Scholar 

  • Blecker SW, King SL, Derry LA, Chadwick OA, Ippolito JA, Kelly EF (2007) The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry 86:189–199

    Article  Google Scholar 

  • Cai K, Gao D, Chen J, Luo S (2009) Probing the mechanisms of silicon-madiated pathogen resistance. Plant Signal Behav 4:1–3

    Article  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104:608–614

    Article  Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realize? Trends Plant Sci 16:61–68

    Article  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  Google Scholar 

  • Da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330

    Article  Google Scholar 

  • Da Cunha KPV, do Nascimento CWA, da Silva AJ (2008) Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. J Plant Nutr Soil Sci 171:849–853

    Article  Google Scholar 

  • Dayanandan P (1983) Localization of silica and calcium-carbonate in plants. Scanning electron microscopy. Scanning Microsc Int 3:1519–1524

    Google Scholar 

  • Dietrich D, Hinke S, Baumann W, Fehlhaber R, Baeucker E, Ruehle G, Wienhaus O, Marx G (2003) Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Anal Bioanal Chem 376:399–404

    Google Scholar 

  • Ehrenberg CG (1846) Einige fernere Mittheilungen über die geformten unkrystallinischen Kieseltheile von Pflanzen, besonders über Spongilla Erinaceus in Schlesien und ihre Beziehung zu den Infusorienerde-Ablagerungen des Berliner Grundes. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preußischen Akademie der Wissenschaften zu Berlin 4:996–1001

    Google Scholar 

  • Ehrenberg CG (1854) Mikrogeologie. Voss, Leipzig, Germany

    Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. PNAS 91:11–17

    Article  Google Scholar 

  • Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  Google Scholar 

  • Epstein E (2001) Silicon in plants: facts vs concepts. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant sciences, vol.  8, Elsevier, Amsterdam and New York, pp. 1–10

    Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  Google Scholar 

  • Euliss KW, Dorsey BL, Benke KC, Banks MK, Schwab AP (2005) The use of plant tissues silica content for estimating transpiration. Ecol Eng 25:343–348

    Article  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  Google Scholar 

  • Fauteaux F, Remus-Borel W, Menzies JG, Belanger RR (2006) Silicon and plant disease resistance against pathogenic fungi. Fems Microbiol Lett 249:1–6

    Article  Google Scholar 

  • Fu FF, Akagi T, Yabuki S (2002) Origin of silica particles found in the cortex of matteuccia roots. Soil Sci Am J 66:1265–1271

    Article  Google Scholar 

  • Gierlinger N, Sapei L, Paris O (2008) Insights into the chemical composition of equisetum hyemale by high resolution Raman imaging. Planta 227:969–980

    Article  Google Scholar 

  • Gregory W (1855) On the presence of diotomaceae, phytolitharia, and sponge spicules in soils which support vegetation. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Proceedings of the botanical society of Edinburgh., Elsevier, Edinburgh, pp 69–72

    Google Scholar 

  • Hayasaka T, Fujii H, Ishiguro K (2008) The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038–1044

    Article  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann of Bot 96:1027–1046

    Article  Google Scholar 

  • Hong K, Cho HJ, Yoon CS, Hwang I (2009) Effects of silicate liquid fertilizer on the decrease of lodging and yield of rice. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) The 9th international conference of the east and southeast asia federation of soil science societies., Elsevier, Amsterdam and New York, pp 662–663

    Google Scholar 

  • Horst WJ, Marschner H (1978) Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil 50:287–303

    Article  Google Scholar 

  • Hunt JW, Dean AP, Webster RE, Johnson GN, Ennos AR (2008) A novel mechanism by which silica defends grass against herbivory. Ann Bot 102:653–656

    Article  Google Scholar 

  • Iwasaki K, Matsumura A (1999) Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). J Soil Sci Plant Nutr 45:909–920

    Article  Google Scholar 

  • Jones LHP, Handreck KA (1965) Studies of silica in the oat plant III. Plant Soil 23:79–96

    Article  Google Scholar 

  • Jones LHP, Milne AA (1963) Studies of silica in the oat plant I. Plant Soil 18:207–220

    Article  Google Scholar 

  • Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exper Bot 66:54–60

    Article  Google Scholar 

  • Kohl FG (1889) Anatomisch-physiologische Untersuchung der Kalksalze und Kieselsäure in der Pflanze. N.G. Elwert, Marburg, Germany

    Google Scholar 

  • Korndörfer GH, Snyder GH, Ulloa M, Powell G, Datnoff LE (2001) Calibration of soil and plant silicon analysis for rice production. J Plant Nutrition 24:1071–1084

    Article  Google Scholar 

  • Laue M, Hause G, Dietrich D, Wielange B (2006) Ultrastructure and microanalysis of silica bodies in Dactylis Glomerata. Microchim Acta 156:103–107

    Article  Google Scholar 

  • Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in contrasting winter wheat cultivars. Environ Exper Bot 64:286–294

    Article  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. J Soil Sci Plant Nutr 50:11–18

    Article  Google Scholar 

  • Ma JF, Takahashi E (1990a) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119

    Article  Google Scholar 

  • Ma JF, Takahashi E (1990b) The effect of silicic acid on rice in a P-deficient soil. Plant Soil 126:121–125

    Article  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  Google Scholar 

  • Ma JF, Sasaki M, Matsumoto H (1997) Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil 188:171–176

    Article  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant sciences, vol.  8, Elsevier, Amsterdam and New York, pp 17–40

    Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  Google Scholar 

  • Mali M, Aery NC (2008) Silicon effect on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). J Plant Nutr Soil Sci 171:835–840

    Article  Google Scholar 

  • Massey F, Ennos RA, Hartley S (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152:677–683

    Article  Google Scholar 

  • McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: natural selection for an inducible defense against herbivores. PNAS 80:790–791

    Article  Google Scholar 

  • McNaughton SJ, Tarrants JL, McNaughton MM, Davis RD (1985) Silica as a defense against herbivory and a growth promoter in African grasses. Ecology 66:528–53

    Article  Google Scholar 

  • Mihlbachler MC, Rivals F, Solounias N, Semprebon GM (2011) Dietary change and evolution of horses in North America. Science 331:1178–1181

    Article  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–126

    Article  Google Scholar 

  • Miyake Y, Takahashi E (1978) Silicon deficiency of tomato plants. J Soil Sci Plant Nutr 24:175–189

    Article  Google Scholar 

  • Miyake Y, Takahashi E (1982) Effect of silicon on the growth of cucumber plants in a solution culture. J Soil Sci Plant Nutr 53:15–22

    Google Scholar 

  • Miyake Y, Takahashi E (1985) Effect of silicon on the growth of soybean plants in a solution culture. J Soil Sci Plant Nutr 31:625–634

    Article  Google Scholar 

  • Miyake Y, Takahashi E (1986) Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. J Soil Sci Plant Nutr 32:321–326

    Article  Google Scholar 

  • Nwugo CC, Huerta AJ (2008) Silicon-induced resistance in rice (Oryza sativa). J Plant Nutr Soil Sci 171:841–848

    Article  Google Scholar 

  • Piperno DR (1988) Phytolith analysis—an archaeological and geological perspective. Academic press, San Diego

    Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Article  Google Scholar 

  • Reynolds O, Keeping M, Meyer J (2009) Silicon-augmented resistance of plants to herbivorous insect: a review. Ann Appl Biol 155:171–186

    Article  Google Scholar 

  • Saccone L, Conley DJ, Sauer D (2006) Methodologies for amorphous silica analysis. J Geochem Explor 88:235–238

    Article  Google Scholar 

  • Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  Google Scholar 

  • Sachs J (1862) Ergebnisse einiger Untersuchungen über die in Pflanzen enthaltene Kieselsäure. Flora 20:33–38, 49–55, 65–71

    Google Scholar 

  • Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant sciences, vol.  8, Elsevier, pp. 85–114

    Google Scholar 

  • Sapei L, Gierlinger N, Hartmann J, Noske R, Strauch P, Paris O (2007) Structural and analytical studies of silica accumulation in Equisetum hyemale. Anal Bioanal Chem 389:1249–1257

    Article  Google Scholar 

  • Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903

    Article  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Quian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidise. Phytochem 66:1551–1559

    Article  Google Scholar 

  • Shi G, Quingsheng C, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. J Plant Growth Regul 61:45–52

    Article  Google Scholar 

  • Shimoyama S (1958) Effect of silicon on lodging and wind damage in rice. Report for the research funds granted by ministry of agriculture. Elsevier, Japan, p. 82

    Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji E, Tanaka K, Inanaga S (2009) Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in Sorghum grown with or without silicon under water stress. J Plant Nutr 32:433–442

    Article  Google Scholar 

  • Struve GA (1835) De silica in plantis nonnulli. Phil. Diss. Berlin

    Google Scholar 

  • Takahashi E (1968) Silica as a nutrient to the rice plant. Jpn Agr Res Q:1–4

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. Macmillan, New York

    Google Scholar 

  • Tubb HJ, Hodson MJ, Hodson GC (1993) The inflorescence papillae of the triticeae: a new tool for taxonomic and archaeological research. Ann Bot 72:537–545

    Article  Google Scholar 

  • Watanabe S, Shimoi E, Ohkama N, Hayashi H, Yoneyama T, Yazaki J, Fujii F, Shinbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Fujiwara T (2004) Identification of several rice genes regulated by Si nutrition. J Soil Sci Plant Nutr 50:1273–1276

    Article  Google Scholar 

  • Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396

    Article  Google Scholar 

  • Welton FA (1928) Lodging in oats and wheat. Bot Gaz 85:121–151

    Article  Google Scholar 

  • Williams DE, Vlamis J (1957) The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley grown in culture solutions. Plant Physiol 32:404–409

    Article  Google Scholar 

  • Yang YF, Liang YC, Lou YS, Sun WC (2003) Influences of silicon on peroxidise superoxide dismutase activity and lignin content in leaves of wheat Tritium aestivum L. and its relation to resistance to powdery mildew. Sci Agric Sinica 36:813–817

    Google Scholar 

  • Yoshida S, Navasero SA, Ramirez EA (1969) Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31:48–56

    Article  Google Scholar 

  • Zhang GL, Dai QG, Zhang HC (2006) Silicon application enhances rice resistance to sheath blight (Rhizocronia solani) in rice. J Plant physiol Mol Biol 32:600–606

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keutmann, I., Melzer, B., Seidel, R., Thomann, R., Speck, T. (2015). Review: The Functions of Phytoliths in Land Plants. In: Hamm, C. (eds) Evolution of Lightweight Structures. Biologically-Inspired Systems, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9398-8_9

Download citation

Publish with us

Policies and ethics