Advertisement

Review: The Functions of Phytoliths in Land Plants

  • Inga C. Keutmann
  • Björn Melzer
  • Robin Seidel
  • Ralf Thomann
  • Thomas Speck
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 6)

Abstract

This chapter comprises a review on phytoliths in land plants. The review summarizes the occurence and role of phytoliths, including their appearance and potentially important functions in land plants, ranging from mechanics, reduction of climatic and chemical stresses, defence against herbivores and pathogenic fungi or germs, to growth promotion. The review ends with a short summary of the methods used for quantitative and qualitative detection, and a description of phytoliths in land plant tissues.

Keywords

Phytoliths silica silica function silica detection 

References

  1. Agarie S, Agata W, Uchida H, Kubota F, Kaufman PB (1996) Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. J Exp Bot 47:655–660CrossRefGoogle Scholar
  2. Blackman E (1968) The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Ann Bot 32:207–218Google Scholar
  3. Blackman E, Parry DW (1968) Opaline silica deposition in rye (Secale cereale L.). Ann Bot 32:199–206Google Scholar
  4. Blecher IC, Seidel R, Thomann R, Speck T (2012) Comparison of different methods for the detection of silica inclusions in plant tissues. Int J Plant Sci 173:1–11CrossRefGoogle Scholar
  5. Blecker SW, King SL, Derry LA, Chadwick OA, Ippolito JA, Kelly EF (2007) The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry 86:189–199CrossRefGoogle Scholar
  6. Cai K, Gao D, Chen J, Luo S (2009) Probing the mechanisms of silicon-madiated pathogen resistance. Plant Signal Behav 4:1–3CrossRefGoogle Scholar
  7. Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104:608–614CrossRefGoogle Scholar
  8. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realize? Trends Plant Sci 16:61–68CrossRefGoogle Scholar
  9. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389CrossRefGoogle Scholar
  10. Da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330CrossRefGoogle Scholar
  11. Da Cunha KPV, do Nascimento CWA, da Silva AJ (2008) Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. J Plant Nutr Soil Sci 171:849–853CrossRefGoogle Scholar
  12. Dayanandan P (1983) Localization of silica and calcium-carbonate in plants. Scanning electron microscopy. Scanning Microsc Int 3:1519–1524Google Scholar
  13. Dietrich D, Hinke S, Baumann W, Fehlhaber R, Baeucker E, Ruehle G, Wienhaus O, Marx G (2003) Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Anal Bioanal Chem 376:399–404Google Scholar
  14. Ehrenberg CG (1846) Einige fernere Mittheilungen über die geformten unkrystallinischen Kieseltheile von Pflanzen, besonders über Spongilla Erinaceus in Schlesien und ihre Beziehung zu den Infusorienerde-Ablagerungen des Berliner Grundes. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preußischen Akademie der Wissenschaften zu Berlin 4:996–1001Google Scholar
  15. Ehrenberg CG (1854) Mikrogeologie. Voss, Leipzig, GermanyGoogle Scholar
  16. Epstein E (1994) The anomaly of silicon in plant biology. PNAS 91:11–17CrossRefGoogle Scholar
  17. Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641–664CrossRefGoogle Scholar
  18. Epstein E (2001) Silicon in plants: facts vs concepts. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant sciences, vol.  8, Elsevier, Amsterdam and New York, pp. 1–10Google Scholar
  19. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160CrossRefGoogle Scholar
  20. Euliss KW, Dorsey BL, Benke KC, Banks MK, Schwab AP (2005) The use of plant tissues silica content for estimating transpiration. Ecol Eng 25:343–348CrossRefGoogle Scholar
  21. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360CrossRefGoogle Scholar
  22. Fauteaux F, Remus-Borel W, Menzies JG, Belanger RR (2006) Silicon and plant disease resistance against pathogenic fungi. Fems Microbiol Lett 249:1–6CrossRefGoogle Scholar
  23. Fu FF, Akagi T, Yabuki S (2002) Origin of silica particles found in the cortex of matteuccia roots. Soil Sci Am J 66:1265–1271CrossRefGoogle Scholar
  24. Gierlinger N, Sapei L, Paris O (2008) Insights into the chemical composition of equisetum hyemale by high resolution Raman imaging. Planta 227:969–980CrossRefGoogle Scholar
  25. Gregory W (1855) On the presence of diotomaceae, phytolitharia, and sponge spicules in soils which support vegetation. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Proceedings of the botanical society of Edinburgh., Elsevier, Edinburgh, pp 69–72Google Scholar
  26. Hayasaka T, Fujii H, Ishiguro K (2008) The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038–1044CrossRefGoogle Scholar
  27. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann of Bot 96:1027–1046CrossRefGoogle Scholar
  28. Hong K, Cho HJ, Yoon CS, Hwang I (2009) Effects of silicate liquid fertilizer on the decrease of lodging and yield of rice. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) The 9th international conference of the east and southeast asia federation of soil science societies., Elsevier, Amsterdam and New York, pp 662–663Google Scholar
  29. Horst WJ, Marschner H (1978) Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil 50:287–303CrossRefGoogle Scholar
  30. Hunt JW, Dean AP, Webster RE, Johnson GN, Ennos AR (2008) A novel mechanism by which silica defends grass against herbivory. Ann Bot 102:653–656CrossRefGoogle Scholar
  31. Iwasaki K, Matsumura A (1999) Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). J Soil Sci Plant Nutr 45:909–920CrossRefGoogle Scholar
  32. Jones LHP, Handreck KA (1965) Studies of silica in the oat plant III. Plant Soil 23:79–96CrossRefGoogle Scholar
  33. Jones LHP, Milne AA (1963) Studies of silica in the oat plant I. Plant Soil 18:207–220CrossRefGoogle Scholar
  34. Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exper Bot 66:54–60CrossRefGoogle Scholar
  35. Kohl FG (1889) Anatomisch-physiologische Untersuchung der Kalksalze und Kieselsäure in der Pflanze. N.G. Elwert, Marburg, GermanyGoogle Scholar
  36. Korndörfer GH, Snyder GH, Ulloa M, Powell G, Datnoff LE (2001) Calibration of soil and plant silicon analysis for rice production. J Plant Nutrition 24:1071–1084CrossRefGoogle Scholar
  37. Laue M, Hause G, Dietrich D, Wielange B (2006) Ultrastructure and microanalysis of silica bodies in Dactylis Glomerata. Microchim Acta 156:103–107CrossRefGoogle Scholar
  38. Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in contrasting winter wheat cultivars. Environ Exper Bot 64:286–294CrossRefGoogle Scholar
  39. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. J Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  40. Ma JF, Takahashi E (1990a) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119CrossRefGoogle Scholar
  41. Ma JF, Takahashi E (1990b) The effect of silicic acid on rice in a P-deficient soil. Plant Soil 126:121–125CrossRefGoogle Scholar
  42. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397CrossRefGoogle Scholar
  43. Ma JF, Sasaki M, Matsumoto H (1997) Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil 188:171–176CrossRefGoogle Scholar
  44. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant sciences, vol.  8, Elsevier, Amsterdam and New York, pp 17–40Google Scholar
  45. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691CrossRefGoogle Scholar
  46. Mali M, Aery NC (2008) Silicon effect on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). J Plant Nutr Soil Sci 171:835–840CrossRefGoogle Scholar
  47. Massey F, Ennos RA, Hartley S (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152:677–683CrossRefGoogle Scholar
  48. McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: natural selection for an inducible defense against herbivores. PNAS 80:790–791CrossRefGoogle Scholar
  49. McNaughton SJ, Tarrants JL, McNaughton MM, Davis RD (1985) Silica as a defense against herbivory and a growth promoter in African grasses. Ecology 66:528–53CrossRefGoogle Scholar
  50. Mihlbachler MC, Rivals F, Solounias N, Semprebon GM (2011) Dietary change and evolution of horses in North America. Science 331:1178–1181CrossRefGoogle Scholar
  51. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–126CrossRefGoogle Scholar
  52. Miyake Y, Takahashi E (1978) Silicon deficiency of tomato plants. J Soil Sci Plant Nutr 24:175–189CrossRefGoogle Scholar
  53. Miyake Y, Takahashi E (1982) Effect of silicon on the growth of cucumber plants in a solution culture. J Soil Sci Plant Nutr 53:15–22Google Scholar
  54. Miyake Y, Takahashi E (1985) Effect of silicon on the growth of soybean plants in a solution culture. J Soil Sci Plant Nutr 31:625–634CrossRefGoogle Scholar
  55. Miyake Y, Takahashi E (1986) Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. J Soil Sci Plant Nutr 32:321–326CrossRefGoogle Scholar
  56. Nwugo CC, Huerta AJ (2008) Silicon-induced resistance in rice (Oryza sativa). J Plant Nutr Soil Sci 171:841–848CrossRefGoogle Scholar
  57. Piperno DR (1988) Phytolith analysis—an archaeological and geological perspective. Academic press, San DiegoGoogle Scholar
  58. Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440CrossRefGoogle Scholar
  59. Reynolds O, Keeping M, Meyer J (2009) Silicon-augmented resistance of plants to herbivorous insect: a review. Ann Appl Biol 155:171–186CrossRefGoogle Scholar
  60. Saccone L, Conley DJ, Sauer D (2006) Methodologies for amorphous silica analysis. J Geochem Explor 88:235–238CrossRefGoogle Scholar
  61. Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459CrossRefGoogle Scholar
  62. Sachs J (1862) Ergebnisse einiger Untersuchungen über die in Pflanzen enthaltene Kieselsäure. Flora 20:33–38, 49–55, 65–71Google Scholar
  63. Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in plant sciences, vol.  8, Elsevier, pp. 85–114Google Scholar
  64. Sapei L, Gierlinger N, Hartmann J, Noske R, Strauch P, Paris O (2007) Structural and analytical studies of silica accumulation in Equisetum hyemale. Anal Bioanal Chem 389:1249–1257CrossRefGoogle Scholar
  65. Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903CrossRefGoogle Scholar
  66. Shi Q, Bao Z, Zhu Z, He Y, Quian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidise. Phytochem 66:1551–1559CrossRefGoogle Scholar
  67. Shi G, Quingsheng C, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. J Plant Growth Regul 61:45–52CrossRefGoogle Scholar
  68. Shimoyama S (1958) Effect of silicon on lodging and wind damage in rice. Report for the research funds granted by ministry of agriculture. Elsevier, Japan, p. 82Google Scholar
  69. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329CrossRefGoogle Scholar
  70. Sonobe K, Hattori T, An P, Tsuji W, Eneji E, Tanaka K, Inanaga S (2009) Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in Sorghum grown with or without silicon under water stress. J Plant Nutr 32:433–442CrossRefGoogle Scholar
  71. Struve GA (1835) De silica in plantis nonnulli. Phil. Diss. BerlinGoogle Scholar
  72. Takahashi E (1968) Silica as a nutrient to the rice plant. Jpn Agr Res Q:1–4Google Scholar
  73. Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. Macmillan, New YorkGoogle Scholar
  74. Tubb HJ, Hodson MJ, Hodson GC (1993) The inflorescence papillae of the triticeae: a new tool for taxonomic and archaeological research. Ann Bot 72:537–545CrossRefGoogle Scholar
  75. Watanabe S, Shimoi E, Ohkama N, Hayashi H, Yoneyama T, Yazaki J, Fujii F, Shinbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Fujiwara T (2004) Identification of several rice genes regulated by Si nutrition. J Soil Sci Plant Nutr 50:1273–1276CrossRefGoogle Scholar
  76. Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396CrossRefGoogle Scholar
  77. Welton FA (1928) Lodging in oats and wheat. Bot Gaz 85:121–151CrossRefGoogle Scholar
  78. Williams DE, Vlamis J (1957) The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley grown in culture solutions. Plant Physiol 32:404–409CrossRefGoogle Scholar
  79. Yang YF, Liang YC, Lou YS, Sun WC (2003) Influences of silicon on peroxidise superoxide dismutase activity and lignin content in leaves of wheat Tritium aestivum L. and its relation to resistance to powdery mildew. Sci Agric Sinica 36:813–817Google Scholar
  80. Yoshida S, Navasero SA, Ramirez EA (1969) Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31:48–56CrossRefGoogle Scholar
  81. Zhang GL, Dai QG, Zhang HC (2006) Silicon application enhances rice resistance to sheath blight (Rhizocronia solani) in rice. J Plant physiol Mol Biol 32:600–606Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Inga C. Keutmann
    • 1
  • Björn Melzer
    • 1
  • Robin Seidel
    • 1
  • Ralf Thomann
    • 2
  • Thomas Speck
    • 1
    • 3
  1. 1.Plant Biomechanics GroupBotanic Garden of the Albert-Ludwig University, Faculty of BiologyFreiburg im BreisgauGermany
  2. 2.Freiburg Materials Research Center (FMF) and Institute of Macromolecular Chemistry of the Albert-Ludwig UniversityFreiburg im BreisgauGermany
  3. 3.Freiburg Materials Research Center (FMF)Freiburg im BreisgauGermany

Personalised recommendations