Biomimetic Engineering of Tailored, Ultra-Lightweight Fibrous Composites

  • Markus MilwichEmail author
Part of the Biologically-Inspired Systems book series (BISY, volume 6)


Today fiber reinforced plastics (FRP) are well established in manifold technical applications, because they provide advantages such as low weight, high stiffness, high strength and chemical resistance. The broad range of production methods starts from cost effective mass production up to the manufacturing of ultra-lightweight composite parts.

Biological materials are also usually composite materials: Higher plants or bones of higher animals are hierarchically organized and are composed of only a few materials such as lignin, cellulose, apatite and collagen. The large variety and the mechanical properties of natural tissues results primarily from an optimized fiber lay-up to adapt to the mechanical requirements of the respective “installation circumstances”

Advanced lightweight technical solutions need strong materials and structurally optimized structures. In many industries, the structural optimization by an appropriate fiber lay-up has become an important method to save more weight. Corresponding software tools help to optimize topology/shape (e.g. Mattheck: CAO/SKO, Co. Altair: Optistruct), mainly using finite element analyzing technology.

The combination of strong lightweight materials, optimized topology and sophisticated fiber lay-up is also present in many bio-mineralized planktonic shells—for instance diatoms and radiolaria—but also in glass sponges.

Following it is shown, how the high weight-related mechanical properties of plankton are biomimetically transferred into ultra-lightweight technical structures.


Fiber Reinforced Composite Complex geometry Production Process Roboter arm Honeycombs Fractals 


  1. Breitbach E, Sinapius M (2004) Stand und Perspektiven des Leichtbaus und der Adaptronik. Jahresbericht des DLR Instituts für Strukturmechanik, BraunschweigGoogle Scholar
  2. Chaplin CR, Gordon JE, Jeronimidis G (1983) United States Patent. Composite Material. Assignee: Westvaco Corporation, New York (Application 351,777)Google Scholar
  3. Cherif C (Hrsg) (2011) Textile Werkstoffe für den Leichtbau: Techniken—Verfahren—Materialien—Eigenschaften. Springer, Berlin. ISBN: 3642179916Google Scholar
  4. Gordon JE, Jeronimidis G (1980) Composites with high work of fracture. Philos Trans R Soc Lond A 294:545–550CrossRefGoogle Scholar
  5. Henning F, Moeller E (Hrsg) (2011) Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung. Hanser, ISBN 978-3-446-42891-1Google Scholar
  6. Mattheck C (1998) Design in nature—learning from trees. Springer, HeidelbergCrossRefGoogle Scholar
  7. Mattheck C, Kappel R, Tesari I, Kraft O (2004) In Seilen denken–Einfache Anleitung fuer naturnahes Konstruieren. Konstruktionspraxis 9:26–29Google Scholar
  8. Milwich M, Speck T, Speck O, Stegmaier T, Planck H (2006) Biomimetics and technical textiles: solving engineering problems with the help of nature’s wisdom. Am J Bot 93:1455–1465CrossRefGoogle Scholar
  9. Monner HP (2005) Smart materials for active noise and vibration reduction. Proceedings of the Novem–Noise and Vibration: Emerging Methods, Saint-Raphael, FranceGoogle Scholar
  10. Neitzel M, Mitschang P (2004) Handbuch Verbundwerkstoffe. Werkstoffe, Verarbeitung, Anwendung. Hanser, ISBN: 3446220410Google Scholar
  11. Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, ISBN: 3540402837Google Scholar
  12. Spatz H-Ch., Beismann H, Bruechert F, Emanns A, Speck T (1997) Biomechanics of the giant reed Arundo donax. Philos Trans of R Soc Lond B Biol Sci 352:1–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut für Textil-und Verfahrenstechnik DenkendorfHochschule ReutlingenDenkendorfGermany
  2. 2.Hochschule ReutlingenReutlingenGermany

Personalised recommendations