Diatom Frustule Morphology and its Biomimetic Applications in Architecture and Industrial Design

  • Wiebe H. C. F. KooistraEmail author
  • Göran Pohl
Part of the Biologically-Inspired Systems book series (BISY, volume 6)


Diatoms are a highly diverse group of unicellular microalgae. Their multipart silica cell wall, called a frustule, is morphologically highly elaborate and shows many fine-details reminiscent of what designers and civil engineers would readily recognize as solutions to challenges in construction. This makes diatom frustules ideal objects for biomimetic applications in architecture and industrial design. Here we review the diversity of frustule architectures and fine structures as well as the way they are produced. Then we focus on the integrated transfer of knowledge on diatom frustules into practical engineering applications and provide several thematic examples of morphological principles as well as of the materiality as central themes for a design- and material-transfer. We select a number of biological silica reinforced structures and compare them with technical and fibre embedded elements for structural load-bearing details and for additional functional requirements. The examples focus on the benefit of knowledge transfer for future building envelopes in architecture and innovative products for industrial design.


Architecture Biomimetics Building envelope Design Diatoms Electron microscopy Engineering Façade Fibre-reinforced composite Frustule Innovation Silica 



The authors acknowledge support from the COCOON_FS project Plankton- Tech Ulrich Knaack and Tilmann Klein (Façade Research Group at TU Delft), Julia Pohl (Pohl Architekten) and Diana Sarno (SZN) provided constructive comments on the manuscript. Diana Sarno is thanked for providing electron micrographs and Susanne Gosztonyi for providing illustrations on light transferring structures based on glass fibres.


  1. Anonymous (2013) VDI Richtlinie 6226, Bionik-Architektur, Ingenieurbau, Industriedesign. Beuth, BerlinGoogle Scholar
  2. Beautyman M (2012) Jurassic Park-Pohl Architekten guided a school team’s prehistoric-inspired campus pavilion at the Schule für Architektur Saar in Germany. In: Interior Design, New York, pp 135–137Google Scholar
  3. Bradbury J (2004) Nature’s nanotechnologists: unveiling the secrets of diatoms. PLOS Biol 2:1512–1515Google Scholar
  4. Braun D (2008) Bionische Gebäudehüllen. Dissertation, University of StuttgartGoogle Scholar
  5. Crawford SA, Higgins MJ, Mulvaney P et al (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37:543–554CrossRefGoogle Scholar
  6. D’Arcy Thompson W (1917) On growth and form. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. De Stefano M, Kooistra WHCF, Marino D (2003) Morphology of the diatom genus Campyloneis (Bacillariophyceae, Bacillariophyta), with a description of Campyloneis juliae sp. nov. and an evaluation of the function of the valvocopulae. J Phycol 39:735–753CrossRefGoogle Scholar
  8. Drum RW, Gordon R (2003) Star Trek replicators and diatom nanotechnology. Trends Biotechnol 21:325–328CrossRefGoogle Scholar
  9. Edgar LA, Pickett-Heaps JD (1984) Diatom locomotion. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 47–88Google Scholar
  10. Ehrlich A, Kroll L, Gelbrich S et al (2011) Einsatz von tragenden Faserverbundstrukturen in der Architektur. Paper presented at the 18th Symposium: Verbundwerkstoffe und Werkstoffverbunde, Chemnitz, 24 March-1 April 2011Google Scholar
  11. Gersonde R, Harwood DM (1990) Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea) Part 1: Vegetative cells. Proc ODP Sci Results 113:365–402Google Scholar
  12. Gosztonyi S, Brychta M, Gruber P (2010) Challenging the engineering view: comparative analysis of technological and biological functions targeting energy efficient facade systems. In: Brebbia CA, Carpi A (eds) Design & Nature 5, Comparing Design in Nature with Science and Engineering. WIT Press, Southampton, pp 491–502Google Scholar
  13. Gosztonyi S, Judex F, Richter S et al (2011a) Bionischer Lösungsansatz für innovative Tageslichtnutzung im Sanierungsfall. Austrian Institute of Technology, ViennaGoogle Scholar
  14. Gosztonyi S, Judex F, Brychta M et al (2011b) BioSkin-Bionische Fassaden, Potentialstudie über bionische Konzepte für adaptive energieeffiziente Fassaden. Austrian Institute of Technology, ViennaGoogle Scholar
  15. Gruber P (2010) Biomimetics in Architecture: architecture of life and buildings. Springer, ViennaGoogle Scholar
  16. Gruber P, Gosztonyi S (2010) Skin in architecture: towards bioinspired facades. In: Brebbia CA, Carpi A (eds) Design and Nature V, Comparing Design in Nature with Science and Engineering. WIT Press, Southampton, pp 503–513Google Scholar
  17. Guillou L, Chrétiennot-Dinet M-J, Medlin LK et al (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381CrossRefGoogle Scholar
  18. Haeckel E (1898) Kunstformen der Natur. Bibliographisches Institut, Leipzig-JenaGoogle Scholar
  19. Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  20. Harwood DM, Chang KH, Nikolaev VA (2004) Late Jurassic to earliest Cretaceous diatoms from Jasong Synthem, Southern Korea: Evidence for a terrestrial origin. In: Abstracts of the 18th International Diatom Symposium, Międzyzdroje, 2–7 September 2004Google Scholar
  21. Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874CrossRefGoogle Scholar
  22. Ichinomiya M, Yoshikawa S, Kamiya M et al (2011) Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. J Phycol 47:144–151CrossRefGoogle Scholar
  23. Ishii K-I, Iwataki M, Matsuoka K, Imai I (2011) Proposal of identification criteria for resting spores of Chaetoceros species (Bacillariophyceae) from a temperate coastal sea. Phycologia 50:351–362CrossRefGoogle Scholar
  24. Kooistra WHCF, Gersonde R, Medlin LK et al (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) Evolution of planktonic photoautotrophs. Academic Press, Burlington, pp 207–249Google Scholar
  25. Kooistra WHCF, Sarno D, Hernández-Becerril DU et al (2010) Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta). Phycologia 49:471–500CrossRefGoogle Scholar
  26. Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Ann Rev Genet 42:83–107CrossRefGoogle Scholar
  27. Kroll L, Wolf S, Müller S et al (2011) Characterisation of new embedded embroidered sensors for strain measurements in composite materials. In: Abstracts of the 10th Youth Symposium on Experimental Solid Mechanics, Chemnitz, 26-28 May 2011Google Scholar
  28. Mann DG, Marchant HJ (1989) The origins of the diatom and its life cycle. In: Green JC, Leadbeater BSC, Diver WL (eds) The Chromophyte Algae: problems and perspectives. Clarendon Press, Oxford, pp 307–323Google Scholar
  29. Medlin LK, Williams DM, Sims PA (1993) The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. Eur J Phycol 28:261–275CrossRefGoogle Scholar
  30. Müller WEG, Wendt K, Geppert C et al (2006) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. J Biosens Bioelectron 21:1149–1155CrossRefGoogle Scholar
  31. Müller WEG, Wang X, Zeng L et al (2007) Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules. Chinese Sci Bull 52:1372–1381CrossRefGoogle Scholar
  32. Nachtigall W, Pohl G (2013) Bau Bionik. Springer Verlag, BerlinCrossRefGoogle Scholar
  33. Otto F (1975a) Netze in Natur und Technik. IL Berichte 8. Institut für leichte Flächentragwerke, StuttgartGoogle Scholar
  34. Otto F (1975b) Wandelbare Pneus. IL Berichte 12. Institut für leichte Flächentragwerke, StuttgartGoogle Scholar
  35. Otto F (1985) Diatoms 1- Shells in nature and technics, morphogenetic analysis and character synthesis of diatom valves. IL Berichte 28. Institut für leichte Flächentragwerke, StuttgartGoogle Scholar
  36. Otto F (1986) Bambus. IL Berichte 31. Institut für leichte Flächentragwerke, StuttgartGoogle Scholar
  37. Parker AR, Lenau T, Saito A (2013) Biomimetics in optical nanostructures. In: Karthaus O (ed) Biomimetics in photonics. CRC Press, Taylor & Francis Group, Boca Raton, pp 55–116Google Scholar
  38. Pohl G, Pfalz M (2010) Innovative composite-fibre components in architecture. In: Pohl G (ed) Textiles, composites and polymers for buildings. Woodhead Publishing, Cambridge, pp 420–470CrossRefGoogle Scholar
  39. Pohl G, Pohl J, Speck T et al (2010) The role of textiles in providing biomimetic solutions for construction. In: Pohl G (ed) Textiles, composites and polymers for buildings. Woodhead Publishing, Cambridge, pp 310–329CrossRefGoogle Scholar
  40. Pohl G, Feth N, Otten J (2012) BOWOOSS nachhaltige Bausysteme bionisch inspirierter Holzschalenkonstruktionen. Projektdokumentation Teilvorhaben 1, Biona- Forschungsbericht. B2E3, Institut für Effiziente Bauwerke. HTW des Saarlandes University Press, SaarbrückenGoogle Scholar
  41. Rabosky DL, Sorhannus U (2009) Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457:183–186CrossRefGoogle Scholar
  42. Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  43. Sarno D, Kooistra WHCF, Medlin LK et al (2005) Diversity in the genus Skeletonema (Bacillariophyceae): II. An assessment of the taxonomy of S. costatum-like species, with the description of four new species. J Phycol 41:151–176CrossRefGoogle Scholar
  44. Sarno D, Kooistra WHCF, Balzano S et al (2007) Diversity in the genus Skeletonema (Bacillariophyceae): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. J Phycol 43:156–170CrossRefGoogle Scholar
  45. Schmid A-MM, Schulz D (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100:267–288CrossRefGoogle Scholar
  46. Sinninghe-Damsté JS, Muyzer G, Abbas B et al (2004) The rise of the rhizosolenoid diatoms. Science 304:584–587CrossRefGoogle Scholar
  47. Sörhannus U (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Cladistics 20:487–497CrossRefGoogle Scholar
  48. Suto I (2006) The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea. Mar Micropaleontol 58:259–269CrossRefGoogle Scholar
  49. Teichmann K, Wilke J (1996) Prozeß und Form “Natürliche Konstruktionen,” Der Sonderforschungsbereich 230. Ernst & Sohn Verlag, BerlinGoogle Scholar
  50. Townley HE (2011) Diatom frustules: physical, optical, and biotechnological applications. In: Seckbach J, Kociolek JP (eds) The diatom world; cellular origin, life in extreme habitats and astrobiology, vol 19. Springer Science and Business Media, Dordrecht, pp 273–289Google Scholar
  51. Vrieling EG, Beelen TPM, van Santen RA et al (2000) Nano-scale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study. J Phycol 36:146–159CrossRefGoogle Scholar
  52. Zitzler U (2008) Licht im Schwamm-Schwämme haben die ersten Glas-Lichtleiter erfunden. Pressemitteilung Universität StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Stazione Zoologica Anton DohrnVilla ComunaleNaplesItaly
  2. 2.Faculteit Bouwkunde, Facade Research Group/officeTU Delft/Pohl ArchitektenErfurtGermany

Personalised recommendations