Advertisement

Biomineralization in Diatoms: The Organic Templates

  • H. EhrlichEmail author
  • A. Witkowski
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 6)

Abstract

While the geometries of diatom frustules have been investigated in detail, the processes leading to their formation—morphogenesis and biomineralization—are not well understood. The study of organic templates, which are suspected to be important for biosilicification of diatoms, have been mainly investigated on the basis of diverse demineralization techniques. In contrast to naturally occurring dissolution of diatom cell walls in natural habitats, all experiments in vitro were based on chemical reagents including HF- or alkali-based techniques with addition of some additives as presented in this chapter. Mostly, the amino acids (serine, threonine, hydrohyproline) diverse proteinaceous materials (frustulins, pleuralins, silaffins, silacidins, circulins) as well as polyamines have been proposed to regulate biosilicification in vivo in diatoms. In this chapter, we review the biochemical pathways and potential functions of these chemical compounds and their roles in the biomineralization process. In addition, we demonstrate the presence of chitin and discuss its potential as scaffolding as well as a template material in siliceous cell walls of diatoms. The current findings show that a complex network of different organic components is responsible for the biomineralization of diatoms. Since both the organic network and the precipitated silica are integrated in the material which forms the diatom frustule, the material properties must differ from that of pure silica. As the material properties are a crucial factor for the defensive performance of the frustule and thus their survival, it is likely that organic templates for silicification play a role both for the development process and for the improvement of the material properties of the finished shells.

Keywords

Silica Biomineralisation Organic templates Morphogenesis Biochemical pathways Amino acids Proteins Polyamines Chitin Demineralization techniques 

Notes

Acknowledgements

H.E. is very grateful to the German Research Foundation (DFG, Project EH 394/1) for financial support as well as to Vasily V. Bazhenov and Alexey Rusakov for their technical assistance. We cordially thank Alex Kraberg and Karen Wiltshire for specimens of T. rotula and Diana Krawczyk for images of T. rotula. Kevin McCartney is acknowledged for the revision of the English language of the manuscript.

References

  1. Al-Sawalmih A (2007) Crystallographic texture of the arthropod cuticle using synchrotron wide angle X-ray diffraction. PhD Thesis, Rheinisch-westfälische Technische Hochschule AachenGoogle Scholar
  2. Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86CrossRefGoogle Scholar
  3. Atkins EDT (1985) Conformation in polysaccharides and complex carbohydrates. J Biosci 8:375–387CrossRefGoogle Scholar
  4. Blackwell J (1973) Chitin. In: Walton AG, Blackwell J (eds) Biopolymers. Academic Press, New York, pp 474–489Google Scholar
  5. Blackwell J, Parker KD, Rudall KM (1965) Chitin in pogonophore tubes. J Mar Biol Assoc UK 45:659–661CrossRefGoogle Scholar
  6. Blackwell J, Parker KD, Rudall KM (1967) Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385CrossRefGoogle Scholar
  7. Brunner E, Richthammer P, Ehrlich H et al (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 48(51):9724–9727CrossRefGoogle Scholar
  8. Cha JN, Shimizu K, Zhou Y, Christiansen S, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci U S A 96:361–365CrossRefGoogle Scholar
  9. De Yoreo JJ, Vekilov P (2003) Principles of crystal nucleation and growth. Rev Miner Geochem 54:57–93CrossRefGoogle Scholar
  10. Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050CrossRefGoogle Scholar
  11. Dweltz NE, Colvin JR, McInnes AG (1968) Studies on chitin (b-(1-4)-linked 2-acetamido-2-deoxy-D-glucan) fibers from the diatom Thalassiosira fluviatilis, Hustedt. III. The structure of chitin from X-ray diffraction and electron microscope observations. Can J Chem 46:1513–1521CrossRefGoogle Scholar
  12. Ehrlich H (2010a) Biological materials of marine origin. Invertebrates. Springer, New York, p 594CrossRefGoogle Scholar
  13. Ehrlich H (2010b) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52:661–699CrossRefGoogle Scholar
  14. Ehrlich H, Worch H (2007a) Collagen, a huge matrix in glass-sponge flexible spicules of meter-long Hyalonema sieboldi. In: Bäuerlein E (ed) Handbook of biomineralization vol. 1. The biology of biominerals structure formation, chapter 2. Wiley VCH, Weinheim, pp 23–41Google Scholar
  15. Ehrlich H, Worch H (2007b) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Custodio MR, Lobo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research- biodiversity, innovation & sustainability. Museu Nacional, Rio de Janeiro, pp 303–312Google Scholar
  16. Ehrlich H, Ereskovsky AV, Vyalikh DV, Molodtsov SL, Mertig M, Göbel C, Simon P, Hanke T, Heinemann S, Krylova DD, Pompe W, Worch H (2007a) Collagen in natural fibres of deep-sea glass sponge. In: Arias JL, Fernandez MS (eds) Biomineralization: from paleontology to materials science. Editorial Universitaria, Santiago de Chile, pp 439–448Google Scholar
  17. Ehrlich H, Krautter M, Hanke T et al (2007b) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool B Mol Dev Evol 308B:473–483CrossRefGoogle Scholar
  18. Ehrlich H, Heinemann S, Heinemann C, Bazhenov VV, Shapkin NP, Simon P, Tabachnick KD, Worch H, Hanke T (2008a) Nanostructural organisation of naturally occurring composites: Part I. Silica-collagen-based biocomposites. J Nanomat (available online doi:10.1155/2008/623838)Google Scholar
  19. Ehrlich H, Janussen D, Simon P, Heinemann S, Bazhenov VV, Shapkin NP, Mertig M, Erler C, Born R, Worch H, Hanke T (2008b) Nanostructural organisation of naturally occuring composites: part II. Silica-chitin-based biocomposites. J Nanomat (available online doi:10.1155/2008/670235)Google Scholar
  20. Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS (2008c) Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron 39:1062–1091CrossRefGoogle Scholar
  21. Ehrlich H, Deutzmann R, Capellini E, Koon H, Solazzo C, Yang Y, Ashford D, Thomas- Oates J, Lubeck M, Baessmann C, Langrock T, Hoffmann R, Wörheide G, Reitner J, Simon P, Ereskovsky AV, Mertig M, Vyalikh DV, Molodtsov SL, Worch H, Brunner E, Smetacek V, Collins M (2010a) Mineralization of the meter-long biosilica structures of glass sponges is template on hydroxylated collagen. Nat Chem 2:1084–1088CrossRefGoogle Scholar
  22. Ehrlich H, Demadis K, Pokrovsky O, Koutsoukos P (2010b) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689CrossRefGoogle Scholar
  23. Exposito J-Y, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268:302–316CrossRefGoogle Scholar
  24. Gaill F, Persson J, Sugiyama P, Vuong R, Chanzy H (1992) The chitin system in the tubes of deep sea hydrothermal vent worms. J Struct Biol 109:116–128CrossRefGoogle Scholar
  25. Gifford DJ, Bohrer RN, Boyd CM (1981) Spines on diatoms: do copepods care? Limnol Oceanogr 26(6):1057–1061CrossRefGoogle Scholar
  26. Gooday GW, Woodman J, Casson EA, Browne CA (1985) Effect of nikkomycin on chitin spine formation in the diatom Thalassiosira fluviatilis, and observations on its peptide uptake. FEMS Microbiol Lett 28:335–340CrossRefGoogle Scholar
  27. Goodrich JD, Winter WT (2007) Alpha-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257CrossRefGoogle Scholar
  28. Gordon R, Parkinson J (2005) Potential roles for diatomists in nanotechnology. J Nanosci Nanotechnol 5:35–40CrossRefGoogle Scholar
  29. Hamm CE, Smetacek V (2007) Armor: why, when and how? In: Falkowski P, Knoll A (eds) Evolution of primary producers in the sea. Elsevier, San Diego, pp 311–332CrossRefGoogle Scholar
  30. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide efficient mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  31. Hattori S, Adachi E, Ebihara T, Shirai T, Someki I, Irie S (1999) Alkali-treated collagen retained the triple helical conformation and ligand activity for the cell adhesion. J Biochem 125:676–684CrossRefGoogle Scholar
  32. Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331CrossRefGoogle Scholar
  33. Herth W (1978) A special chitin-fibril-synthesizing apparatus in the centric diatom Cyclotella. Naturwissenschaften 65:260–261CrossRefGoogle Scholar
  34. Herth W (1979) The site of β-chitin fibril formation in centric diatoms. II. The chitin-forming cytoplasmic structures. J Ultrastruct Res 68:16–27CrossRefGoogle Scholar
  35. Herth W (1980) Calcofluor white and congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 87:442–450CrossRefGoogle Scholar
  36. Herth W, Barthlott W (1979) The site of β-chitin fibril formation in centric diatoms. I. Pores and fibril formation. J Ultrastruct Res 68:6–15CrossRefGoogle Scholar
  37. Herth W, Zugenmaier P (1977) Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica. J Ultrastruct Res 61:230–239CrossRefGoogle Scholar
  38. Herth W, Kuppel A, Schnepf E (1977) Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). J Cell Biol 72:311–321CrossRefGoogle Scholar
  39. Herth W, Mulisch M, Zugenmaier P (1986) Comparison of chitin fibril structure and assembly in three unicellular organisms. In: Muzzarelli R, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Publishing Corporation, New York, pp 107–120CrossRefGoogle Scholar
  40. Kamada T, Takemaru T, Prosser JI, Gooday GW (1991) Right and left helicity of chitin microfibrils in stipe cells in Coprinus cinereus. Protoplasma 165:64–70CrossRefGoogle Scholar
  41. Kamatani A (1971) Physical and chemical characteristics of biogenous silica. Mar Biol 8:89–95CrossRefGoogle Scholar
  42. Kröger N, Paulsen N (2008) Diatoms—from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107CrossRefGoogle Scholar
  43. Kröger N, Sandhage KH (2010) From diatom biomolecules to bioinspired syntheses of silica- and titania-based materials. MRS Bull 35:122–126CrossRefGoogle Scholar
  44. Kröger N, Sumper M (1998) Diatom cell wall proteins and the cell biology of silica biomineralization. Protist 149:213–219CrossRefGoogle Scholar
  45. Kröger N, Sumper M (2004) The molecular basis of diatom biosilica formation. In: Baeueurlein E (ed) Biomineralization, 2nd edn. Wiley-VCH, Weinheim, pp 137–158Google Scholar
  46. Kröger N, Bergsdorf C, Sumper M (1994) A new calcium binding glycoprotein family constitutes a major diatom cell wall component. EMBO J 13:4676–4683Google Scholar
  47. Kröger N, Bergsdorf C, Sumper M (1996) Frustulins: domain conservation in a protein family associated with diatom cell walls. Eur J Biochem 239:259–264CrossRefGoogle Scholar
  48. Kröger N, Lehmann G, Rachel R, Sumper M (1997) Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur J Biochem. 250:99–105CrossRefGoogle Scholar
  49. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatombiosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRefGoogle Scholar
  50. Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci U S A 97:14133–38CrossRefGoogle Scholar
  51. Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586CrossRefGoogle Scholar
  52. Lewin JC (1955) The capsule of the diatom Navicula pelliculosa. J Gen Microbiol 13:162–169CrossRefGoogle Scholar
  53. Lewin JC (1961) The dissolution of silica from diatom cell walls. Geochim Cosmochim Acta 21:182–189CrossRefGoogle Scholar
  54. Liebisch W (1929) Experimentelle und kritische Untersuchungen uber die Pektinmembran der Diatomeen unter besonderer Berucksichtigung der Auxosporenbildung und der Kratikularzustande. Z Bot 22:1–97Google Scholar
  55. Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6:58–59CrossRefGoogle Scholar
  56. Mangin LA (1908) Observations sur les diatomees. Ann Sci Nut Bot Biol Veg 8:177–219Google Scholar
  57. Mann S (2001) Biomineralization principles and concepts in bioinorganic materials chemistry. University Press, Oxford, p 198Google Scholar
  58. Marshall KE, Robinson EW, Hengel SM, Paša-Tolić L, Roesijadi G (2012) FRET imaging of diatoms expressing a biosilica-localized ribose sensor. PLoS One 7(3):e33771CrossRefGoogle Scholar
  59. Martin R, Hild S, Walther P et al (2007) Granular chitin in the epidermis of nudibranch molluscs. Biol Bull 213:307–315CrossRefGoogle Scholar
  60. Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007) Long chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. Chem Biochem 8:1729–1735Google Scholar
  61. McLachlan J, McInnes AG, Falk M (1965) Studies on the chitan (chitin: poly-N acetylglucosamine) fibers of the diatom Thalassiosira fluviatilis Hustedt. I. Production and isolation of chitan fibers. Can J Bot 43:707–713CrossRefGoogle Scholar
  62. Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberitues domuncula. Cell Tissue Res 321(2):285–297CrossRefGoogle Scholar
  63. Nakajima T, Volcani BE (1969) 3,4-dihydroxyproline, a new amino acid from diatom cell walls. Science 164:1400–1401CrossRefGoogle Scholar
  64. Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47:7567–7582CrossRefGoogle Scholar
  65. Patwardhan S, Patwardhan G, Perry CC (2007) Interactions of biomolecules with inorganic materials: principles, applications and future prospects. J Mater Chem 17:2875–2884CrossRefGoogle Scholar
  66. Reimann BEF, Lewin JC, Volcani BE (1965) Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis Reimann and Lewin. J Cell Biol 24:39–55CrossRefGoogle Scholar
  67. Reimann BEF, Lewin JC, Volcani BE (1966) Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse. J Phycol 2:74–84CrossRefGoogle Scholar
  68. Revol J-F, Chanzy H (1986) High-resolution electron microscopy of β-chitin microfibrils. Biopolymers 25:1599–1601CrossRefGoogle Scholar
  69. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  70. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge, pp 747Google Scholar
  71. Rudall KM (1955) The distribution of collagen and chitin. In: Brown R, Danielli JF (eds) Fibrous proteins and their biological significance. Symposia of society of experimental biology, No. IX, University Press, Cambridge, pp 49–71Google Scholar
  72. Rudall KM (1969) Chitin and its association with other molecules. J Polym Sci 28:83–102Google Scholar
  73. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 49:597–636CrossRefGoogle Scholar
  74. Sadava D, Volcani BE (1977) Studies on the biochemistry and fine structure of silica shell formation in diatoms formation of hydroxyproline and dihydroxyproline in Nitzschia angularis. Planta 135:7–11CrossRefGoogle Scholar
  75. Scheffel A, Poulsen N, Shian S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci U S A 108:3175–3180CrossRefGoogle Scholar
  76. Schumacher MA, Mizuno K, Bachinger HP (2006) The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J Biol Chem 281:27566–27574CrossRefGoogle Scholar
  77. Sheppard V, Scheffel A, Poulsen N, Kröger N (2012) Live diatom silica immobilization of multimeric and redox-active enzymes. Appl Environ Microbiol 78:211–218CrossRefGoogle Scholar
  78. Spinde K, Kammer M, Freyer K et al (2011) Biomimetic silicification of fibrous chitin from diatoms. Chem Mater 23:2973–2978CrossRefGoogle Scholar
  79. Subburaman K, Pernodet N, Kwak SY et al (2006) Templated biomineralization on self-assembled protein fibers. Proc Natl Acad Sci U S A 103:14672–14677CrossRefGoogle Scholar
  80. Sugiyama J, Boisset C, Hashimoto M, Watanabe T (1999) Molecular directionality of β-chitin biosynthesis. J Mol Biol 286:247–255CrossRefGoogle Scholar
  81. Sumper M (2002) A phase separation model for the nanopatterning of diatom biosilica. Science 295:2430–2433CrossRefGoogle Scholar
  82. Sumper M, Brunner E (2006) Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv Funct Mat 16:17–26CrossRefGoogle Scholar
  83. Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso- and micro-scale. PLoS One 5(12):e14300CrossRefGoogle Scholar
  84. Tilburey GE, Patwardhan SV, Huang J et al (2007) Are hydroxyl-containing biomolecules important in biosilicification? A model study. J Phys Chem B 111:4630–4638CrossRefGoogle Scholar
  85. van de Poll WH, Vrieling EG, Gieskes WWC (1999) Location and expression of frustulins in the pennate diatoms Cylindrotheca fusiformis, Navicula pelliculosa, and Navicula salinarum (Bacillariophyceae). J Phycol 35:1044–1053CrossRefGoogle Scholar
  86. Vincent JVC (2002) Arthropod cuticle: a natural composite shell system. Composites A 33(10):1311–1321CrossRefGoogle Scholar
  87. Vournakis J, Pariser ER, Finkielsztein S, Helton M (1997a) Poly-N-acetyl glucosamine. US patent # 5,623,064. Issued April 22, 1997Google Scholar
  88. Vournakis J, Pariser ER, Finkielsztein S, Helton M (1997b) Method of isolating Poly-N-acetyl glucosamine from microalgal culture. US Patent # 5,622,834. Issued April 22, 1997Google Scholar
  89. Walsby AE, Xypolyta A (1977) The form resistance of chitan fibers attached to the cells of Thalassiosira fluviatilis Hustedt. Br Phycol J 12:215–223CrossRefGoogle Scholar
  90. Weaver JC, Morse DE (2003) Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech 62:356–367CrossRefGoogle Scholar
  91. Wenzl S, Hett R, Richthammer P, Sumper M (2008) Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew Chem 47:1729–1732CrossRefGoogle Scholar
  92. Wieneke R, Bernecker A, Riedel R, Sumper M, Steinem C et al (2011) Silica precipitation with synthetic silaffin peptides. Org Biomol Chem 9:5482–5486CrossRefGoogle Scholar
  93. Yang W, Lopez PJ, Rosengarten G (2011) Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136:42–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.TU Bergakademie FreibergFreibergGermany
  2. 2.University of SzczecinSzczecinPoland

Personalised recommendations