Advertisement

Optical Coherence Tomography for Quantitative Diagnosis in Cardiovascular Disease

  • Wen-Chuan KuoEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 129)

Abstract

In recent years, biomedical imaging technology has made rapid advances that enable the visualization, quantification, and monitoring of morphology and function. There are several tomography modalities which are currently used in clinics, such as computed tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), ultrasound (US), etc. These modalities have been developed for in vivo structural and functional imaging in humans, but frequently require large, expensive and complex systems. The penetration depth of these tomographic techniques is long, but the spatial resolution is typically on the order of several millimeters or hundred of micrometers.

Keywords

Fluorescence lifetime imaging Fluorescence resonance energy transfer Multi-photon NADH FAD 

References

  1. 1.
    T.H. Ko, D.C. Adler, J.G. Fujimoto et al., Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Opt. Express 12, 2112–2119 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    B.E. Bouma, G.J. Tearney, I.P. Bilinsky et al., Self-phase-modulated Kerr-lens mode-locked Cr: forsterite laser source for optical coherence tomography. Opt. Lett. 21, 1839–1841 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    W. Drexler, U. Morgner, F.X. Kärtner et al., In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Leitgeb, W. Drexler, A. Unterhuber et al., Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express 12, 2156–2165 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    B. Povazay, K. Bizheva, A. Unterhuber et al., Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800–1802 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A. Aguirre, N. Nishizawa, J. Fujimoto et al., Continnum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Opt. Express 14, 1145–1160 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    F. Spoler, S. Kray, P. Grychtol et al., Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt. Express 15, 10832–10841 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    P. Cimalla, J. Walther, M. Mehner et al., Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. Opt. Express 17, 19486–19500 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Liu, J.A. Gardecki, S.K. Nadkarni et al., Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat. Med. 17, 1010–1015 (2011)CrossRefGoogle Scholar
  11. 11.
    M.E. Brezinski, G.J. Tearney, B.E. Bouma et al., Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology. Circulation 93, 1206–1213 (1996)CrossRefGoogle Scholar
  12. 12.
    J.G. Fujimoto, M.E. Bresinski, G.J. Tearney et al., Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1, 970–972 (1995)CrossRefGoogle Scholar
  13. 13.
    G.J. Tearney, H. Yabushita, S.L. Houser et al., Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107, 113–119 (2003)CrossRefGoogle Scholar
  14. 14.
    B.E. Bouma, G.J. Tearney, H. Yabushita et al., Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89, 317–321 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Bradu, L. Ma, J.W. Bloor et al., Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart. J. Biophotonic 2, 380–388 (2009)CrossRefGoogle Scholar
  16. 16.
    M.A. Choma, M.J. Suter, B.J. Vakoc et al., Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography. J. Biomed. Opt. 15, 056020–1–056020-6 (2010)CrossRefGoogle Scholar
  17. 17.
    M.T. Tsai, F.Y. Chang, C.K. Lee et al., Observations of cardiac beating behaviors of wild-type and mutant Drosophilae with optical coherence tomography. J. Biophotonics 4, 610–618 (2011)Google Scholar
  18. 18.
    S.Y. Guo, F.T. Liao, M.T. Su et al., Semiautomatic and rapid quantification of heartbeat parameters in Drosophila using optical coherence tomography imaging. J. Biomed. Opt. 18(2), 26004 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Grady, Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  20. 20.
    T.W. Ridler, S. Calvard, Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern 8(8), 630–632 (1978)CrossRefGoogle Scholar
  21. 21.
    P.C. Santos, J.E. Krieger, A.C. Pereira, Renin-angiotensin system, hypertension, and chronic kidney disease: pharmacogenetic implications. J. Pharmacol. Sci. 120(2), 77–88 (2012)CrossRefGoogle Scholar
  22. 22.
    F.T. Liao, C.Y. Chuang, M.T. Su, W.C. Kuo, Necessity of angiotensin-converting enzyme-related gene for cardiac functions and longevity of Drosophila melanogaster assessed by optical coherence tomography. J. Biomed. Opt. 19, 011014–011014-6 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    W.C. Kuo, J.J. Shyu, N.K. Chou, et al., Imaging of human aortic atherosclerotic plaques by polarization-sensitive optical coherence tomography, in Proceedings of IEEE Conference on Engineering in Medicine and Biology, pp. 1111–1114, San Francisco, 2004Google Scholar
  25. 25.
    W.C. Kuo, J.J. Shyu, N.K. Chou et al., Correlation of collagen synthesis with polarization-sensitive optical coherence tomography imaging of in vitro human atherosclerosis. Proc. SPIE 5690, 563–571 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    W.C. Kuo, N.K. Chou, C. Chou et al., Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Appl. Opt. 46, 2520–2527 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    W.C. Kuo, M.W. Hsiung, J.J. Shyu et al., Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography. Opt. Express 16, 8117–8125 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    W.C. Kuo, M.W. Hsiung, J.J. Shyu, et al., Quantitative analysis on optical properties of human atherosclerosis by using polarization-sensitive optical coherence tomography. Proc. SPIE 6842, 684223-1–684223-9 (2008)Google Scholar
  29. 29.
    D. Levitz, L. Thrane, M.H. Frosz et al., Determination of optical properties of highly-scattering media in optical coherence tomography. Opt. Express 12, 249–259 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    L. Thrane, H.T. Yura, P.E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle. J. Opt. Soc. Am. A 17, 484–490 (2000)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    D. Stamper, N.J. Weissman, M. Brezinski, Plaque characterization with optical coherence tomography. J. Am. Coll. Cardiol. 47, C69–C79 (2006)CrossRefGoogle Scholar
  32. 32.
    H. Yabushita, B.E. Bouma, S.L. Houser et al., Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002)CrossRefGoogle Scholar
  33. 33.
    M. Fink, C. Callol-Massot, A. Chu et al., A new method for detection and quantification of heart beat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46, 101–113 (2009)CrossRefGoogle Scholar
  34. 34.
    K. Ocorr, N.L. Reeves, R.J. Wessells et al., KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. PNAS 104(10), 3943–3948 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Jose, D. Collison, The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 4, 160–167 (1970)CrossRefGoogle Scholar
  36. 36.
    J.S. Strobel, A.E. Epstein, R.C. Bourge et al., Nonpharmacologic validation of the intrinsic heart rate in cardiac transplant recipients. J. Intervent. Card Electrophysiol. 3, 15–18 (1999)CrossRefGoogle Scholar
  37. 37.
    G. Paternostro, C. Vignola, D.U. Bartsch et al., Age-associated cardiac dysfunction in Drosophila melanogaster. Circ. Res. 88, 1053–1058 (2001)CrossRefGoogle Scholar
  38. 38.
    R.J. Wessells, E. Fitzgerald, J.R. Cypser et al., Insulin regulation of heart function in aging fruit flies. Nat. Genet. 36, 1275–1281 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of BiophotonicsNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations