Skip to main content

Driving Lightwave in Nanopatterned Nanowire

  • Chapter
  • First Online:
  • 4195 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

Abstract

We introduce various nanocavities on nanowires with one-dimensional photonic crystals (PhCs), which provide strong light-matter interactions for nanolaser applications. Comparing with traditional two-dimensional PhC nanocavities, they further show advantages of ultra-small device footprints and high integration flexibilities with waveguides, which are beneficial for constructing ultra-condensed planar photonic integrated circuits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Γ, γd :

Confinement factor in dielectric

εSi :

Dielectric constant of silicon

εSiO2 :

Dielectric constant of silicon-dioxide

λ:

Wavelength

σε :

Emission cross section of the Er

a, an :

Lattice constant

kx :

Wavevector number in x direction

n:

Number of photonic crystal periods

nNB :

Refractive index of nanobeam

nr :

Refractive index of nanoring

r, r’:

Air hole radius

tNB :

Thickness of nanobeam

tNFB :

Thickness of nano-fishbone

tr :

Thickness of nanoring

tSiO2 :

Thickness of SiO2 slot

w:

Width of nanobeam and nano-fishbone

wr :

Width of nanoring,

E:

Amplitude of electric field

Ex :

Amplitude of electric field in x component

Ey :

Amplitude of electric field in y component

Ez :

Amplitude of electric field in z component

EzSi :

Amplitude of electric field in silicon in z component

EzSiO2 :

Amplitude of electric field in silicon-dioxide in z component

NEr :

Concentration of the Er

Q:

Quality factor

Qlasing :

Quality factor for lasing

QN1 :

Quality factor of N1 nanocavity

QN2 :

Quality factor of N2 nanocavity

R:

Bending radius

Veff :

Effective mode volume

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007)

    Article  ADS  Google Scholar 

  4. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals. Nature 423, 604–605 (2003)

    Article  ADS  Google Scholar 

  5. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–66 (2005)

    Article  ADS  Google Scholar 

  6. P.T. Lin, P.T. Lee, All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide. Opt. Lett. 36, 424–426 (2011)

    Article  Google Scholar 

  7. B. Ellis, M. Mayer, G. Shambat, T. Sarmiento, E. Haller, J.S. Harris, J. Vuckovic, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photonics 5, 297–300 (2011)

    Article  ADS  Google Scholar 

  8. T.W. Lu, P.T. Lin, K.U. Sio, P.T. Lee, Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection. Appl. Phys. Lett. 96, 213702 (2010)

    Article  ADS  Google Scholar 

  9. S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, T. Baba, Super-sensitivity in label-free protein sensing using nanoslot nanolaser. Opt. Express 19, 17683–17690 (2011)

    Article  ADS  Google Scholar 

  10. T.W. Lu, P.T. Lee, Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17, 1518–1526 (2009)

    Article  ADS  Google Scholar 

  11. M. Bartha, O. Benson, Manipulation of dielectric particles using photonic crystal cavities. Appl. Phys. Lett. 89, 253114 (2006)

    Article  ADS  Google Scholar 

  12. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, M. Notomi, Ultralow-power all-optical RAM based on nanocavities. Nat. Photonics 6, 248–252 (2012)

    Article  ADS  Google Scholar 

  13. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  14. T. Baba, Photonic crystals remember the light. Nat. Photonics 1, 11–12 (2007)

    Article  ADS  Google Scholar 

  15. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Photonic-bandgap microcavities in optical waveguide. Nature 390, 143–145 (1997)

    Article  ADS  Google Scholar 

  16. Y. Akahane, T. Asano, B.S. Song, S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)

    Article  ADS  Google Scholar 

  17. B.S. Song, S. Noda, T. Asano, Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005)

    Article  ADS  Google Scholar 

  18. M. Notomi, E. Kuramochi, T. Tanabe, Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photonics 2, 741–747 (2008)

    Article  ADS  Google Scholar 

  19. P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009)

    Article  ADS  Google Scholar 

  20. P.T. Lee, T.W. Lu, L.H. Chiu, Dielectric-band photonic crystal nanobeam lasers. J. Lightwave Technol. 31, 36–42 (2013)

    Article  ADS  Google Scholar 

  21. T.W. Lu, L.H. Chiu, P.T. Lin, P.T. Lee, One-dimensional photonic crystal nanobeam lasers on a flexible substrate. Appl. Phys. Lett. 99, 071101 (2011)

    Article  ADS  Google Scholar 

  22. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, Z. Ma, Flexible integrated photonics: where materials, mechanics and optics meet. Opt. Mater. Express 3, 1313–1331 (2013)

    Article  Google Scholar 

  23. C. Jansen, S. Wietzke, V. Astley, D.M. Mittleman, M. Koch, Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies. Appl. Phys. Lett. 96, 111108 (2010)

    Article  ADS  Google Scholar 

  24. Z. Qiang, W. Zhou, R.A. Soref, Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  ADS  Google Scholar 

  25. W.Y. Chiu, T.W. Huang, Y.H. Wu, Y.J. Chan, C.H. Hou, H.T. Chien, C.C. Chen, A photonic crystal ring resonator formed by SOI nano-rods. Opt. Express 15, 15500–15506 (2007)

    Article  ADS  Google Scholar 

  26. T.W. Lu, W.C. Tsai, C.Y. Wu, P.T. Lee, Laser emissions from one-dimensional photonic crystal rings on silicon-dioxide. Appl. Phys. Lett. 102, 051103 (2013)

    Article  ADS  Google Scholar 

  27. K. Nozaki, S. Kita, T. Baba, Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007)

    Article  ADS  Google Scholar 

  28. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, O. Painter, Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap. Opt. Express 15, 5948–5965 (2007)

    Article  ADS  Google Scholar 

  29. T.W. Lu, P.T. Lin, P.T. Lee, Photonic crystal horizontally slotted nanobeam cavity for silicon-based nanolasers. Opt. Lett. 37, 569–571 (2012)

    Article  ADS  Google Scholar 

  30. A.M. Lakhani, M. Kim, E.K. Lau, M.C. Wu, Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011)

    Article  ADS  Google Scholar 

  31. Y. Zhang, M.W. McCutcheon, I.B. Burgess, M. Lončar, Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities. Opt. Lett. 34, 2694–2696 (2009)

    Article  ADS  Google Scholar 

  32. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004)

    Article  ADS  Google Scholar 

  33. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, T. Baba, Photonic crystal point-shift nanolaser with and without nanoslots: design, fabrication, lasing and sensing characteristics. IEEE J. Sel. Top. Quantum Electron. 17, 1632–1647 (2011)

    Article  Google Scholar 

  34. C. Creatore, L.C. Andreani, M. Miritello, R. Lo, Savio, and F. Priolo, Modification of erbium radiative lifetime in planar silicon slot waveguides. Appl. Phys. Lett. 94, 103112 (2009)

    Article  ADS  Google Scholar 

  35. T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala, Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802 (2006)

    Article  ADS  Google Scholar 

  36. T.W. Lu, P.T. Lee, Photonic crystal nano-fishbone nanocavity. Opt. Lett. 38, 3129–3132 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Tsung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, PT., Lu, TW. (2015). Driving Lightwave in Nanopatterned Nanowire. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics