Skip to main content

Improved Detection and Monitoring of Seed-Borne Fungal Plant Pathogens in Europe

  • Chapter
  • First Online:
Global Perspectives on the Health of Seeds and Plant Propagation Material

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 6))

Abstract

The main goal of seed pathology research and practice is the production and dissemination of high-quality, disease-free seed that maximizes potential crop productivity and value. Presently, the largest part of official seed health tests requires the growth of pathogens (direct methods) but molecular biology offers new tools to diagnose fungal pathogens in/on seeds (indirect methods), reducing the time required by direct methods and improving the output of seed health tests. However, molecular methods suffer some drawbacks and require a more difficult validation procedure than direct methods. This chapter aims at describing the historical context, and the development and implementation of methods for the detection and monitoring of seed-borne plant pathogenic fungi in Europe, with special emphasis on innovative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Bahkali A, Moslem M, Osama E, Amin OE, Niessen L (2011) An optimized protocol for DNA extraction from wheat seeds and loop-mediated isothermal amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int J Mol Sci 12:3459–3472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Adams IP, Glover RH, Monger WA (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10:537–545

    Article  PubMed  CAS  Google Scholar 

  • Agarwal VK, Sinclair JB (1997) Principles of seed pathology, 2nd edn. CRC Press, Boca Raton, p 539

    Google Scholar 

  • Amatulli MT, Spadaro D, Gullino ML, Garibaldi A (2012) Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. Plant Pathol 134:401–408

    Article  CAS  Google Scholar 

  • Bates JA, Taylor EJA (2001) Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Mol Plant Pathol 2:275–280

    Article  PubMed  CAS  Google Scholar 

  • Bates JA, Taylor EJA, Kenyon DM, Thomas JE (2001) The application of real-time PCR to the identification, detection and quantification of Pyrenophora species in barley seed. Mol Plant Pathol 2:49–57

    Article  PubMed  CAS  Google Scholar 

  • Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Capote N, Pastrana AM, Aguado A, Sánchez-Torres P (2012) Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In: Cumagun CJR (ed) Plant pathology. InTech. ISBN 978-953-51-0489-6, pp 151–202

    Google Scholar 

  • Cappelli C, Buonaurio R, Pezzotti M, Mazzucato A (1993) A simplification of the embryo test method (ETM) to detect Ustilago nuda (Jens.) Rostr. in barley seeds. Phytopathol Mediterr 32:143–144

    Google Scholar 

  • Cappelli C, Covarelli L (2005) Methods used in seed pathology and their recent improvements. Phytopathol Pol 35:11–18

    Google Scholar 

  • Carmichael DJ (2012) Developing a sensitive, high-throughput tool for rapid detection of agronomically important seed-borne pathogens of tomato. Master of Science dissertation, University of Witwatersrand, Johannesburg

    Google Scholar 

  • Chen YY, Conner RL, Gillard CL, McLaren DL, Boland GJ, Balasubramanian PM, Stasolla C, Zhou QX, Hwang SF, Chang KF, Babcock C (2013) A quantitative real-time PCR assay for detection of Colletotrichum lindemuthianum in navy bean seeds. Plant Pathol 62:900–907

    Article  CAS  Google Scholar 

  • Cullen DW, Lees AK, Toth IK, Duncan JM (2002) Detection of Colletotrichum coccodes from soil and potato tubers by conventional PCR and quantitative real-time PCR. Plant Pathol 51:281–292

    Article  CAS  Google Scholar 

  • De Boer SH, Lopez MM (2012) New grower-friendly methods for plant pathogen monitoring. Annu Rev Phytopathol 50:197–218

    Article  PubMed  Google Scholar 

  • De Tempe J, Binnerts J (1979) Introduction to methods of seed health testing. Seed Sci Technol 7:601–636

    Google Scholar 

  • Dent KC, Stephen JR, Finch-Savage WE (2004) Molecular profiling of microbial communities associated with seeds of Beta vulgaris subsp. vulgaris (sugar beet). J Microb Methods 56:17–26

    Article  CAS  Google Scholar 

  • Djalali Farahani-Kofoet R, Römer P, Grosch R (2012) Systemic spread of downy mildew in basil plants and detection of the pathogen in seed and plant samples. Mycol Prog 11:961–966

    Article  Google Scholar 

  • Doyer LC (1938) Manual for the determination of seed-borne diseases. ISTA, Wageningen

    Google Scholar 

  • Eibel P, Wolf GA, Koch E (2005) Detection of Tilletia caries, causal agent of common bunt of wheat by ELISA and PCR. J Phytopathol 153:297–306

    Article  CAS  Google Scholar 

  • EPPO (2007) Diagnostic protocols for regulated pests, PM7/29(2) Tilletia indica. EPPO Bull 37:503–520

    Article  Google Scholar 

  • EPPO (2008) Diagnostic protocols for regulated pests, PM7/85(1) Plasmopara halstedii. EPPO Bull 38:343–348

    Article  Google Scholar 

  • EPPO (2009) Diagnostic protocols for regulated pests, PM7/91(1) Gibberella circinata. EPPO Bull 39:298–309

    Article  Google Scholar 

  • EPPO (2010) Use of EPPO diagnostic protocols, PM7/76 (2). EPPO Bull 40:350–352

    Article  Google Scholar 

  • EPPO (2013) EPPO A1 and A2 Lists of pests recommended for regulation as quarantine pests. Standard PM 1/2 (22). EPPO, Paris, 16 pp

    Google Scholar 

  • FAO (2013) ISPM 11 – pest risk analysis for quarantine pests, International Standards for phytosanitary measures. FAO, Rome, 36 pp

    Google Scholar 

  • Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies. J Exp Bot 5:1445–1454

    Article  Google Scholar 

  • Germini A, Rossi S, Zanetti A, Corradini R, Fogher C, Marchelli R (2005) Development of a peptide nucleic acid array platform for the detection of genetically modified organisms in food. J Agric Food Chem 53:3958–3962

    Article  PubMed  CAS  Google Scholar 

  • Gil-Serna J, Vázquez C, Sardiñas N, González-Jaén MT, Patiño B (2009) Discrimination of the main Ochratoxin A-producing species in Aspergillus section Circumdati by specific PCR assays. Int J Food Microbiol 136:83–87

    Article  PubMed  CAS  Google Scholar 

  • Guillemette T, Iacomi-Vasilescu B, Simoneau P (2004) Conventional and real-time PCR-based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis 88:490–496

    Article  CAS  Google Scholar 

  • Hill NS, Hiatt EE III, De Battista JP, Costa MC, Griffiths CH, Klap J, Thorogood D, Reeves JH (2002) Seed testing for endophytes by microscopic and immunoblot procedures. Seed Sci Technol 30:347–355

    Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iacomi-Vasilescu B, Blancard D, Guénard M, Molinero-Demilly V, Laurent E, Simoneau P (2002) Development of a PCR-based diagnostic assay for detecting pathogenic Alternaria species in cruciferous seeds. Seed Sci Technol 30:87–95

    Google Scholar 

  • Ioos R, Fourrier C, Wilson V, Webb K, Schereffer JL, Tourvielle de Labrouhe D (2012) An optimised duplex real-time PCR tool for sensitive detection of the quarantine oomycete Plasmopara halstedii in sunflower seeds. Phytopathology 102:908–917

    Article  PubMed  CAS  Google Scholar 

  • Ioos R, van den Boogert PHHF (2012) EUPHRESCO non-competitive project: ring testing of diagnostic protocols for identification and detection of Gibberella circinata in pine seed. Final report. http://www.euphresco.org/downloadFile.cfm?id=730. Accessed 15 Jan 2014

  • Ioos R, Annesi T, Fourrier C, Saurat C, Chandelier A, Inghelbrecht S, Diogo ELF, Perez-Sierra AM, Barnes AV, Paruma K, Adam M, van Rijswick P, Riccioni L (2013) Test performance study of diagnostic procedures for identification and detection of Gibberella circinata in pine seeds in the framework of a EUPHRESCO project. OEPP/EPPO Bull 43(2):267–275

    Article  Google Scholar 

  • Ioos R, Fourrier C, Iancu G, Gordon TR (2009) Sensitive detection of Fusarium circinatum in pine seed by combining an enrichment procedure with a real-time polymerase chain reaction using dual-labeled probe chemistry. Phytopathology 99:582–590

    Article  PubMed  CAS  Google Scholar 

  • ISTA (2014) International rules for seed testing. Annexe to Chapter 7: Seed Health Testing. http://www.seedtest.org/en/download-ista-seed-health-testing-methods-_content---1--1132--746.html. Accessed 28 Aug 2014

  • ISTA (2007) ISTA method validation for seed testing V.1. (http://www.seedtest.org/upload/cms/user/ISTAMethodValidationforSeedTesting-V1.01.pdf. Accessed 13 Jan 2014

  • Josefsen L, Christiansen SK (2002) PCR as a tool for the early detection and diagnosis of common bunt in wheat, caused by Tilletia tritici. Mycol Res 106:1287–1292

    Article  CAS  Google Scholar 

  • Kellerer T, Sedlmeier M, Rabenstein F, Killermann B (2006) Development of immunochemical and PCR methods for qualitative detection of Tilletia species in organic seeds. Dumalasova, V. (ed.). Special issue. Czech J Genetics Plant Breed 42:72–74

    Google Scholar 

  • Khanzada AK, Shetty HS, Mathur SB, Cappelli C, Infantino A, Porta-Puglia A (1989) Avoidance of phenol in the embryo count procedure. In: 22nd International Seed Testing Association congress, seed symposium, Edinburgh, 21–30 June 1989. Abstracts of papers. ISTA, Zürich: n. 38

    Google Scholar 

  • Kochanová M, Zouhar M, Prokinová E, Rysanek P (2004) Detection of Tilletia controversa and Tilletia caries in wheat by PCR method. Plant Soil Environ 50:75–77

    Google Scholar 

  • Konstantinova P, Bonants PJM, van Gent-Pelzer M, van der Zouwen P, van den Bulk R (2002) Development of specific primers for detection and identification of Alternaria spp. in carrot material by PCR and comparison with blotter and plating assays. Mycol Res 106:23–33

    Article  CAS  Google Scholar 

  • Kubota R, Alvarez AM, Vine BG, Jenkins DM (2007) Development of a loop-mediated isothermal amplification method (LAMP) for detection of the bacterial wilt pathogen Ralstonia solanacearum (Abstract). Phytopathology 97:S60

    Article  Google Scholar 

  • Kulik T, Jestoi M, Okorski A (2011) Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain. FEMS Microbiol Lett 314:49–56

    Article  PubMed  CAS  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ling K, Wechter WP, Walcott RR, Keinath HP (2011) Development of a real-time RT-PCR assay for Squash Mosaic Virus useful for broad spectrum detection of various serotypes and its incorporation into a multiplex seed health assay. J Phytopathol 159:649–656

    Article  CAS  Google Scholar 

  • Majumder D, Rajesh T, Suting EG, Debbarma A (2013) Detection of seed borne pathogens of wheat: recent trends. Aust J Crop Sci 7:500–507

    CAS  Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Man Sci 59:129–142

    Article  CAS  Google Scholar 

  • McKay GJ, Brown AE, Bjourson AJ, Mercer PC (1999) Molecular characterisation of Alternaria linicola and its detection in linseed. Eur J Plant Pathol 105:157–166

    Article  CAS  Google Scholar 

  • McNeil M, Roberts AMI, Cockerell V, Mulholland V (2004) Real-time PCR assay for quantification of Tilletia caries contamination of UK wheat seed. Plant Pathol 53:741–750

    Article  CAS  Google Scholar 

  • Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics – new solutions for old problems. Eur J Plant Pathol 116:1–19

    Article  CAS  Google Scholar 

  • Munkvold GP (2009) Seed pathology progress in academia and industry. Annu Rev Phytopathol 47:285–311

    Article  PubMed  CAS  Google Scholar 

  • Neergaard P (1979) Seed pathology, vols I–II, 2nd edn. MacMillan Press, London/Basingstoke

    Google Scholar 

  • Niessen L, Vogel RF (2010) Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int J Food Microbiol 140:183–191

    Article  PubMed  CAS  Google Scholar 

  • Noble M, de Tempe J, Neergaard P (1958) An annotated list of seed-borne diseases. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Noble M, Richardson MJ (1968) An annotated list of seed-borne diseases. 2nd ed. Proc Int Seed Test Assoc 33:1–91

    Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucl Acid Res 28(12):e63

    Article  CAS  Google Scholar 

  • OECD (2012) A synthesis of international regulatory aspects that affect seed trade. OECD Seed Schemes, http://www.oecd.org/tad/code/internationalregulatoryaspectsseedtrade.pdf. Accessed 28 Jan 2014

  • Parida MM, Santhosh SR, Dash PK, Lakshmana Rao PV, Morita K (2008) Rapid and real-time assays for detection and quantification of Chikungunya virus. Future Virol 3:179–192

    Article  CAS  Google Scholar 

  • Pasquali M, Piatti P, Gullino ML, Garibaldi A (2006) Development of a real-time polymerase chain reaction for the detection of Fusarium oxysporum f. sp. basilici from basil seed and roots. J Phytopathol 154:632–636

    Article  CAS  Google Scholar 

  • Pellegrino C, Gilardi G, Gullino ML, Garibaldi A (2010) Detection of Phoma valerianellae in lamb’s lettuce seeds. Phytoparasitica 38:159–165

    Article  Google Scholar 

  • Peters J, Sledz W, Bergervoet JHW, van der Wolf JM (2007) An enrichment microsphere immunoassay for the detection of Pectobacterium atrosepticum and Dickeya dianthicola in potato tuber extracts. Eur J Plant Pathol 17:97–107

    Article  Google Scholar 

  • Quarta A, Mita G, Haidukowski M, Logrieco A, Mulè G, Visconti A (2006) Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. FEMS Microbiol Lett 259:7–13

    Article  PubMed  CAS  Google Scholar 

  • Richardson MJ (1979) An annotated list of seed-borne diseases, 3rd edn. CMI, Kew and ISTA, Zurich

    Google Scholar 

  • Roberts AMI, Theobald CM, McNeil M (2007) Calibration of quantitative PCR assays. J Agric Biol Environ Stat 12:364–378

    Article  Google Scholar 

  • Stobbe AY, Daniels J, Espindola AS, Verma R, Melcher U, Ochoa-Corona F, Garzon C, Fletcher J, Schneider W (2013) E-probe diagnostic nucleic acid analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics. J Microb Methods 94:356–366

    Article  CAS  Google Scholar 

  • Szemes M, Bonants P, deWeerdt M, Baner J, Landegren U, Schoen CD (2005) Diagnostic application of padlock probes: multiplex detection of plant pathogens using universal microarrays. Nucl Acid Res 33:e70

    Article  Google Scholar 

  • Tsui CKM, Woodhall J, Chen W, LéVesque CA, Lau A, Schoen CD, Baschien C, Najafzadeh MJ, De Hoog GS (2011) Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus 2:177–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsui CKM, Wang B, Schoen CD, Hamelin RC (2013) Rapid identification and detection of pathogenic fungi by padlock probes. In: Gupta VK et al (eds) Laboratory protocols in fungal biology: current methods in fungal biology; fungal biology. Springer, New York/Heidelberg/Dordrecht/London

    Google Scholar 

  • Tucker T, Marra M, Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85:142–154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Udayashankar AC, Chandra Nayaka S, Archana B, Anjana G, Niranjana SR, Mortensen CN, Lund OS, Prakash HS (2012) Specific PCR-based detection of Alternaria helianthi: the cause of blight and leaf spot in sunflower. Arch Microbiol 194:923–932

    Article  PubMed  CAS  Google Scholar 

  • van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays®. BMC Genetics 8:276

    Google Scholar 

  • Vincelli P, Tisserat N (2008) Nucleic acid-based pathogen detection in applied plant pathology. Plant Dis 92:660–669

    Article  CAS  Google Scholar 

  • Waalwijk C, Kastelein P, de Vries I, Kerènyi Z, van der Lee T, Hasselink T, Köhl J, Kema GHJ (2003) Mjr changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754

    Article  CAS  Google Scholar 

  • Waalwijk C, van der Heide R, de Vries I, van der Lee T, Schoen C, Costrel-Decorainville G, Haeuser-Hahn I, Kastelein P, Köhl J, Lonnet P, Demarquet T, Kema GHJ (2004) Quantitative detection of Fusarium species in wheat using TaqMan. Eur J Plant Pathol 110:481–494

    Article  CAS  Google Scholar 

  • Walcott R, Gitaitis RD, Langston DB (2004) Detection of Botrytis aclada in onion seed using magnetic capture hybridization and the polymerase chain reaction. Seed Sci Technol 32:425–438

    Article  Google Scholar 

  • Walcott RR (2003) Detection of seed-borne pathogens. Hortic Technol 13:40–47

    Google Scholar 

  • Walcott RR, Ha Y, Johnson K (2008) Simultaneous detection of multiple pathogens in seeds using magnetic capture hybridization and real-time PCR. J Plant Pathol 90:S2.209

    Google Scholar 

  • White JR, Maddox C, White O, Angiuoli SV, Fricke WF (2013) CloVR-ITS: Automated internal transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal microbiota. Microbiome. doi:10.1186/2049-2618

    PubMed  PubMed Central  Google Scholar 

  • Woese CR (2004) A new biology for a new century. Microbiol Mol Biol Rev 68:173–186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang N, Geiser DM, Smart CD (2007) Macroarray detection of solanaceous plant pathogens in the Fusarium solani species complex. Plant Dis 91:1612–1620

    Article  CAS  Google Scholar 

  • Zouhar M, Mazáková J, Prokinová E, Vánová M, Rysánek P (2010) Quantification of Tilletia caries and Tilletia controversa mycelium in wheat apical meristem by real-time PCR. Plant Prot Sci 46:107–115

    CAS  Google Scholar 

Download references

Acknowledgements

GV wish to thank Valérie Grimault and Renaud Ioos for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vannacci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vannacci, G., Sarrocco, S., Porta-Puglia, A. (2014). Improved Detection and Monitoring of Seed-Borne Fungal Plant Pathogens in Europe. In: Gullino, M., Munkvold, G. (eds) Global Perspectives on the Health of Seeds and Plant Propagation Material. Plant Pathology in the 21st Century, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9389-6_6

Download citation

Publish with us

Policies and ethics