Skip to main content

Intravital Two-Photon Excitation Microscopy in Neuroscience: General Concepts and Applications

  • Chapter
  • First Online:
Book cover Advances in Intravital Microscopy

Abstract

Multiphoton excitation microscopy has revolutionized biomedical research during the last two decades by enabling high resolution fluorescent microscopy in intact tissues. This feature makes two-photon excitation (2PE) microscopy ideal for intravital imaging of neural tissue, permitting the observation of structural and functional neuronal dynamics in undisrupted neural circuits. Here we review the fundamental concepts of intravital 2PE microscopy, describe methods and techniques associated with it, and highlight the most significant findings reported on neuron and glia structure dynamics as well as on neuronal activity using this in vivo imaging technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akemann W, Sasaki M, Mutoh H, Imamura T, Honkura N, Knopfel T (2013) Two-photon voltage imaging using a genetically encoded voltage indicator. Sci Rep 3:2231. doi:10.1038/srep02231

    PubMed Central  PubMed  Google Scholar 

  • Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger M, Severi K, Macklin J, Patel R, Pulver S, Wardill T, Fischer E, Schüler C, Chen T-W, Sarkisyan K, Marvin J, Bargmann C, Kim D, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter E, Looger L (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. doi:10.3389/fnmol.2013.00002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert H, Theis F, Meyer-Luehmann M, Bechmann I, Dimou L, Götz M (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16(5):580–586. doi:10.1038/nn.3371

    CAS  PubMed  Google Scholar 

  • Blinder P, Shih A, Rafie C, Kleinfeld D (2010) Topological basis for the robust distribution of blood to rodent neocortex. Proc Natl Acad Sci U S A 107(28):12670–12675. doi:10.1073/pnas.1007239107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blinder P, Tsai P, Kaufhold J, Knutsen P, Suhl H, Kleinfeld D (2013) The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 16(7):889–897. doi:10.1038/nn.3426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyden E, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi:10.1038/nn1525

    CAS  PubMed  Google Scholar 

  • Brown C, Li P, Boyd J, Delaney K, Murphy T (2007) Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 27(15):4101–4110. doi:10.1523/jneurosci.4295-06.2007

    CAS  PubMed  Google Scholar 

  • Cai D, Cohen K, Luo T, Lichtman J, Sanes J (2013) Improved tools for the Brainbow toolbox. Nat Methods 10(6):540–547. doi:10.1038/nmeth.2450

    CAS  PubMed Central  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science (New York, NY) 263(5148):802–805. doi:10.1126/science.8303295

    CAS  Google Scholar 

  • Chen J, Nedivi E (2013) Highly specific structural plasticity of inhibitory circuits in the adult neocortex. Neuroscientist 19(4):384–393. doi:10.1177/1073858413479824

    PubMed  Google Scholar 

  • Chen J, Flanders G, Lee W-CA, Lin W, Nedivi E (2011) Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit. J Neurosci 31(35):12437–12443. doi:10.1523/JNEUROSCI.0420-11.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Cichon J, Wang W, Qiu L, Lee S-JR, Campbell N, Destefino N, Goard M, Fu Z, Yasuda R, Looger L, Arenkiel B, Gan W-B, Feng G (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76(2):297–308. doi:10.1016/j.neuron.2012.07.011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. doi:10.1038/nature12354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng A, Gonçalves JT, Golshani P, Arisaka K, Portera-Cailliau C (2011) Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat Methods 8(2):139–142. doi:10.1038/nmeth.1552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow D, Groszer M, Pribadi M, Machniki M, Carmichael S, Liu X, Trachtenberg J (2009) Laminar and compartmental regulation of dendritic growth in mature cortex. Nat Neurosci 12(2):116–124. doi:10.1038/nn.2255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88

    CAS  PubMed  Google Scholar 

  • Cruz-Martin A, Crespo M, Portera-Cailliau C (2010) Delayed stabilization of dendritic spines in fragile X mice. J Neurosci 30(23):7793–8596. doi:10.1523/jneurosci.0577-10.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Roo M, Klauser P, Muller D (2008) LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biol 6(9):e219. doi:10.1371/journal.pbio.0060219

    PubMed Central  PubMed  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29. doi:10.1038/nmeth.f.324

    CAS  PubMed  Google Scholar 

  • Denk W (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci U S A 91(14):6629–6633. doi:10.1073/pnas.91.14.6629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science (New York, NY) 248(4951):73–76. doi:10.1126/science.2321027

    CAS  Google Scholar 

  • Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner R, Graybiel A, Moore C, Boyden E (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105(3):1393–1405. doi:10.1152/jn.00828.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie T, Helmchen F, Denk W, Brecht M, Osten P (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101(52):18206–18211. doi:10.1073/pnas.0407976101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixit R, Lu F, Cantrup R, Gruenig N, Langevin L, Kurrasch D, Schuurmans C (2011) Efficient gene delivery into multiple CNS territories using in utero electroporation. J Vis Exp (52). doi:10.3791/2957

  • Dong J, Revilla-Sanchez R, Moss S, Haydon P (2010) Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease. Neuropharmacology 59(4–5):268–275. doi:10.1016/j.neuropharm.2010.04.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drew P, Shih A, Driscoll J, Knutsen P, Blinder P, Davalos D, Akassoglou K, Tsai P, Kleinfeld D (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7(12):981–984. doi:10.1038/nmeth.1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drew P, Shih A, Kleinfeld D (2011) Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc Natl Acad Sci U S A 108(20):8473–8478. doi:10.1073/pnas.1100428108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrar M, Bernstein I, Schlafer D, Cleland T, Fetcho J, Schaffer C (2012) Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat Methods 9(3):297–302. doi:10.1038/nmeth.1856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng G, Mellor R, Bernstein M, Keller-Peck C, Nguyen Q, Wallace M, Nerbonne J, Lichtman J, Sanes J (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–92

    CAS  PubMed  Google Scholar 

  • Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi:10.1146/annurev-neuro-061010-113817

    CAS  PubMed  Google Scholar 

  • Fenrich K, Weber P, Hocine M, Zalc M, Rougon G, Debarbieux F (2012) Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J Physiol 590(Pt 16):3665–3675. doi:10.1113/jphysiol.2012.230532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher JA, Salzberg BM, Yodh AG (2005) Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. J Neurosci Methods 148(1):94–102. doi:10.1016/j.jneumeth.2005.06.027

    CAS  PubMed  Google Scholar 

  • Flusberg B, Nimmerjahn A, Cocker E, Mukamel E, Barretto R, Ko T, Burns L, Jung J, Schnitzer M (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5(11):935–943. doi:10.1038/nmeth.1256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483(7387):92–97. doi:10.1038/nature10844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghiran I (2011) Introduction to fluorescence microscopy. Methods Mol Biol (Clifton, NJ) 689:93–136. doi:10.1007/978-1-60761-950-5_7

    CAS  Google Scholar 

  • Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4(1):73–79. doi:10.1038/nmeth989

    PubMed  Google Scholar 

  • Golshani P, Portera-Cailliau C (2008) In vivo 2-photon calcium imaging in layer 2/3 of mice. J Vis Exp (13). doi:10.3791/681

  • Golshani P, Gonçalves J, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C (2009) Internally mediated developmental desynchronization of neocortical network activity. J Neurosci 29(35):10890–10899. doi:10.1523/jneurosci.2012-09.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonçalves J, Anstey J, Golshani P, Portera-Cailliau C (2013) Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci 16(7):903–909. doi:10.1038/nn.3415

    PubMed  Google Scholar 

  • Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19(5):520–529. doi:10.1016/j.conb.2009.09.003

    CAS  PubMed  Google Scholar 

  • Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7(5):399–405

    CAS  PubMed  Google Scholar 

  • Grewe BF, Voigt FF, Van’t Hoff M, Helmchen F (2011) Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed Opt Express 2(7):2035–2046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. doi:10.1016/j.neuron.2012.02.011

    CAS  PubMed  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan W-B (2002) Long-term dendritic spine stability in the adult cortex. Nature 420(6917):812–818. doi:10.1038/nature01276

    CAS  PubMed  Google Scholar 

  • Guo D, Arnspiger S, Rensing N, Wong M (2012) Brief seizures cause dendritic injury. Neurobiol Dis 45(1):348–355. doi:10.1016/j.nbd.2011.08.020

    PubMed Central  PubMed  Google Scholar 

  • Harrison T, Ayling O, Murphy T (2012) Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron 74(2):397–409. doi:10.1016/j.neuron.2012.02.028

    CAS  PubMed  Google Scholar 

  • Harvey C, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450(7173):1195–1200. doi:10.1038/nature06416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–972. doi:10.1038/nmeth818

    CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–705. doi:10.1038/nrn2699

    CAS  PubMed  Google Scholar 

  • Holtmaat A, Trachtenberg J, Wilbrecht L, Shepherd G, Zhang X, Knott G, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45(2):279–370. doi:10.1016/j.neuron.2005.01.003

    CAS  PubMed  Google Scholar 

  • Holtmaat A, Wilbrecht L, Knott G, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441(7096):979–1062. doi:10.1038/nature04783

    CAS  PubMed  Google Scholar 

  • Holtmaat A, Bonhoeffer T, Chow D, Chuckowree J, De Paola V, Hofer S, Hübener M, Keck T, Knott G, Lee W-CA, Mostany R, Mrsic-Flogel T, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg J, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4(8):1128–1172. doi:10.1038/nprot.2009.89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7(3):205–209. doi:10.1038/Nphoton.2012.336

    CAS  Google Scholar 

  • Huber D, Petreanu L, Ghitani N, Ranade S, Hromádka T, Mainen Z, Svoboda K (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64. doi:10.1038/nature06445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes E, Kang S, Fukaya M, Bergles D (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676. doi:10.1038/nn.3390

    CAS  PubMed  Google Scholar 

  • Ji N, Sato TR, Betzig E (2012) Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A 109(1):22–27. doi:10.1073/pnas.1109202108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293):1307–1312. doi:10.1038/nature08947

    CAS  PubMed  Google Scholar 

  • Judkewitz B, Rizzi M, Kitamura K, Häusser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4(6):862–869. doi:10.1038/nprot.2009.56

    CAS  PubMed  Google Scholar 

  • Jung JC, Schnitzer MJ (2003) Multiphoton endoscopy. Opt Lett 28(11):902–904

    PubMed  Google Scholar 

  • Kawakami R, Sawada K, Sato A, Hibi T, Kozawa Y, Sato S, Yokoyama H, Nemoto T (2013) Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser. Sci Rep 3:1014. doi:10.1038/Srep01014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keck T, Mrsic-Flogel T, Vaz Afonso M, Eysel U, Bonhoeffer T, Hübener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11(10):1162–1169. doi:10.1038/nn.2181

    CAS  PubMed  Google Scholar 

  • Kelly E, Majewska A (2010) Chronic imaging of mouse visual cortex using a thinned-skull preparation. Journal of visualized experiments. J Vis Exp (44). doi:10.3791/2060

  • Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 102(39):14063–14068. doi:10.1073/pnas.0506029102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerschensteiner M, Schwab M, Lichtman J, Misgeld T (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11(5):572–577. doi:10.1038/nm1229

    CAS  PubMed  Google Scholar 

  • Kim J, Jiang N, Tadokoro C, Liu L, Ransohoff R, Lafaille J, Dustin M (2010) Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods 352(1–2):89–100. doi:10.1016/j.jim.2009.09.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375(1):89–108. doi:10.1002/(SICI)1096-9861(19961104)375:1<89::AID-CNE6>3.0.CO;2-K

    CAS  PubMed  Google Scholar 

  • Kleinfeld D, Mitra P, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95(26):15741–15747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobat D, Horton N, Xu C (2011) In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16(10):106014

    PubMed  Google Scholar 

  • Kovalchuk Y, Garaschuk O (2012) Two-photon chloride imaging using MQAE in vitro and in vivo. Cold Spring Harb Protoc 2012(7):778–785. doi:10.1101/pdb.prot070037

    PubMed  Google Scholar 

  • Kuhn B, Denk W, Bruno RM (2008) In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc Natl Acad Sci U S A 105(21):7588–7593. doi:10.1073/pnas.0802462105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai C, Franke T, Gan W-B (2012) Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483(7387):87–91. doi:10.1038/nature10792

    CAS  PubMed  Google Scholar 

  • Lakowicz JR (2010) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  • Lattarulo C, Thyssen D, Kuchibholta K, Hyman B, Bacskaiq B (2011) Microscopic imaging of intracellular calcium in live cells using lifetime-based ratiometric measurements of Oregon Green BAPTA-1. Methods Mol Biol (Clifton, NJ) 793:377–389. doi:10.1007/978-1-61779-328-8_25

    CAS  Google Scholar 

  • Lendvai B, Stern E, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876–881. doi:10.1038/35009107

    CAS  PubMed  Google Scholar 

  • Livet J, Weissman T, Kang H, Draft R, Lu J, Bennis R, Sanes J, Lichtman J (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62. doi:10.1038/nature06293

    CAS  PubMed  Google Scholar 

  • Majewska A, Yiu G, Yuste R (2000) A custom-made two-photon microscope and deconvolution system. Pflugers Arch 441(2–3):398–408. doi:10.1007/s004240000435

    CAS  PubMed  Google Scholar 

  • Majewska A, Newton J, Sur M (2006) Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 26(11):3021–3029. doi:10.1523/JNEUROSCI.4454-05.2006

    CAS  PubMed  Google Scholar 

  • Marshel JH, Kaye AP, Nauhaus I, Callaway EM (2012) Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76(4):713–720. doi:10.1016/J.Neuron.2012.09.021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887. doi:10.1038/42264

    CAS  PubMed  Google Scholar 

  • Mizrahi A, Katz L (2003) Dendritic stability in the adult olfactory bulb. Nat Neurosci 6(11):1201–1207. doi:10.1038/nn1133

    CAS  PubMed  Google Scholar 

  • Mizrahi A, Crowley JC, Shtoyerman E, Katz LC (2004) High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci 24(13):3147–3151. doi:10.1523/Jneurosci.5218-03.2004

    CAS  PubMed  Google Scholar 

  • Mostany R, Portera-Cailliau C (2008a) A craniotomy surgery procedure for chronic brain imaging. Journal of visualized experiments. J Vis Exp (12). doi:10.3791/680

  • Mostany R, Portera-Cailliau C (2008b) A method for 2-photon imaging of blood flow in the neocortex through a cranial window. Journal of visualized experiments. J Vis Exp (12). doi:10.3791/678

  • Mostany R, Portera-Cailliau C (2011) Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. J Neurosci 31(5):1734–1742. doi:10.1523/jneurosci.4386-10.2011

    CAS  PubMed  Google Scholar 

  • Mostany R, Chowdhury T, Johnston D, Portonovo S, Carmichael S, Portera-Cailliau C (2010) Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex. J Neurosci 30(42):14116–14142. doi:10.1523/jneurosci.3908-10.2010

    CAS  PubMed  Google Scholar 

  • Mostany R, Anstey J, Crump K, Maco B, Knott G, Portera-Cailliau C (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33(9):4094–4104. doi:10.1523/JNEUROSCI.4825-12.2013

    CAS  PubMed  Google Scholar 

  • Nikolenko V, Nemet B, Yuste R (2003) A two-photon and second-harmonic microscope. Methods (San Diego, Calif) 30(1):3–18

    CAS  Google Scholar 

  • Nimchinsky E, Sabatini B, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353. doi:10.1146/annurev.physiol.64.081501.160008

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, NY) 308(5726):1314–1318. doi:10.1126/science.1110647

    CAS  Google Scholar 

  • Nishimura N, Schaffer C, Friedman B, Tsai P, Lyden P, Kleinfeld D (2006) Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 3(2):99–207. doi:10.1038/nmeth844

    CAS  PubMed  Google Scholar 

  • Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111(1):29–37

    CAS  PubMed  Google Scholar 

  • Orbach HS, Cohen LB (1983) Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system. J Neurosci 3(11):2251–2262

    CAS  PubMed  Google Scholar 

  • Peterka DS, Takahashi H, Yuste R (2011) Imaging voltage in neurons. Neuron 69(1):9–21. doi:10.1016/j.neuron.2010.12.010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen C, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23(4):1298–1607

    CAS  PubMed  Google Scholar 

  • Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668. doi:10.1038/nn1891

    CAS  PubMed  Google Scholar 

  • Potter SM (2000) Two-photon microscopy for 4D imaging of living neurons. In: Yuste R, Lanni F, Konnerth A (eds) Imaging neurons: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 20.21–20.16

    Google Scholar 

  • Poulet J, Fernandez L, Crochet S, Petersen C (2012) Thalamic control of cortical states. Nat Neurosci 15(3):370–372. doi:10.1038/nn.3035

    CAS  PubMed  Google Scholar 

  • Rensing N, Ouyang Y, Yang X-F, Yamada K, Rothman S, Wong M (2005) In vivo imaging of dendritic spines during electrographic seizures. Ann Neurol 58(6):888–898. doi:10.1002/ana.20658

    PubMed  Google Scholar 

  • Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246. doi:10.1006/dbio.2001.0439

    CAS  PubMed  Google Scholar 

  • Sato T, Muroyama Y, Saito T (2013) Inducible gene expression in postmitotic neurons by an in vivo electroporation-based tetracycline system. J Neurosci 214(2):170–176. doi:10.1016/j.jneumeth.2013.01.014

    CAS  Google Scholar 

  • Schaffer C, Friedman B, Nishimura N, Schroeder L, Tsai P, Ebner F, Lyden P, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4(2):e22. doi:10.1371/journal.pbio.0040022

    PubMed Central  PubMed  Google Scholar 

  • Shcherbakova DM, Subach OM, Verkhusha VV (2012) Red fluorescent proteins: advanced imaging applications and future design. Angew Chem Int Ed Engl 51(43):10724–10738. doi:10.1002/anie.201200408

    CAS  PubMed  Google Scholar 

  • Shih A, Friedman B, Drew P, Tsai P, Lyden P, Kleinfeld D (2009) Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J Cereb Blood Flow Metab 29(4):738–789. doi:10.1038/jcbfm.2008.166

    PubMed Central  PubMed  Google Scholar 

  • Shih A, Driscoll J, Drew P, Nishimura N, Schaffer C, Kleinfeld D (2012a) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309. doi:10.1038/jcbfm.2011.196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih A, Mateo C, Drew P, Tsai P, Kleinfeld D (2012b) A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp (61). doi:10.3791/3742

  • Shimomura O, Johnson F, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239. doi:10.1002/jcp.1030590302

    CAS  PubMed  Google Scholar 

  • Silasi G, Boyd J, Ledue J, Murphy T (2013) Improved methods for chronic light-based motor mapping in mice: automated movement tracking with accelerometers, and chronic EEG recording in a bilateral thin-skull preparation. Front Neural Circuits 7:123. doi:10.3389/fncir.2013.00123

    PubMed Central  PubMed  Google Scholar 

  • Spence MTZ, Johnson ID (2010) The molecular probes handbook: a guide to fluorescent probes and labeling technologies, 11th edn. Live Technologies Corporation, Carlsbad

    Google Scholar 

  • Spires-Jones T, Meyer-Luehmann M, Osetek J, Jones P, Stern E, Bacskai B, Hyman B (2007) Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am J Pathol 171(4):1304–1315. doi:10.2353/ajpath.2007.070055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stettler D, Yamahachi H, Li W, Denk W, Gilbert C (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49(6):877–887. doi:10.1016/j.neuron.2006.02.018

    CAS  PubMed  Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7343. doi:10.1073/pnas.1232232100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank D (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–165. doi:10.1038/385161a0

    CAS  PubMed  Google Scholar 

  • Sword J, Masuda T, Croom D, Kirov S (2013) Evolution of neuronal and astroglial disruption in the peri-contusional cortex of mice revealed by in vivo two-photon imaging. Brain 136(Pt 5):1446–1461. doi:10.1093/brain/awt026

    PubMed Central  PubMed  Google Scholar 

  • Tian L, Hires SA, Looger LL (2012) Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012(6):647–656. doi:10.1101/pdb.top069609

    PubMed  Google Scholar 

  • Trachtenberg J, Chen B, Knott G, Feng G, Sanes J, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917):788–882. doi:10.1038/nature01273

    CAS  PubMed  Google Scholar 

  • Tsai PS, Kleinfeld D (2009) In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation: principles and hardware realization. In: Frostig RD (ed) In vivo optical imaging of brain function, 2nd edn. CRC Press, Boca Raton, pp 59–115

    Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404

    CAS  PubMed  Google Scholar 

  • Tsien R (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi:10.1146/annurev.biochem.67.1.509

    CAS  PubMed  Google Scholar 

  • Weller T, Coons A (1954) Fluorescent antibody studies with agents of varicella and herpes zoster propagated in vitro. Proc Soc Exp Biol Med 86(4):789–794. doi:10.3181/00379727-86-21235

    CAS  PubMed  Google Scholar 

  • Xu T, Yu X, Perlik A, Tobin W, Zweig J, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275):915–924. doi:10.1038/nature08389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Pan F, Parkhurst C, Grutzendler J, Gan W-B (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5(2):201–208. doi:10.1038/nprot.2009.222

    CAS  PubMed  Google Scholar 

  • Yizhar O, Fenno L, Davidson T, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. doi:10.1016/j.neuron.2011.06.004

    CAS  PubMed  Google Scholar 

  • Zariwala H, Borghuis B, Hoogland T, Madisen L, Tian L, De Zeeuw C, Zeng H, Looger L, Svoboda K, Chen T-W (2012) A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J Neurosci 32(9):3131–3141. doi:10.1523/JNEUROSCI.4469-11.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Wang L-P, Brauner M, Liewald J, Kay K, Watzke N, Wood P, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. doi:10.1038/nature05744

    CAS  PubMed  Google Scholar 

  • Zuo Y, Yang G, Kwon E, Gan W-B (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436(7048):261–266. doi:10.1038/nature03715

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Mostany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gonçalves, J.T., Mostany, R. (2014). Intravital Two-Photon Excitation Microscopy in Neuroscience: General Concepts and Applications. In: Weigert, R. (eds) Advances in Intravital Microscopy. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9361-2_1

Download citation

Publish with us

Policies and ethics