Skip to main content

Lessons and Perspectives of Ecological Intensification

  • Chapter
  • First Online:
Book cover Family Farming and the Worlds to Come

Abstract

Consistently with Cassman’s (1999) original wording, ecological intensification is commonly defined as the imperative to attain high productivity per surface area unit and per time unit with a concomitant “ecological” commitment to protect the environment. For most authors who subscribe to this concept the principle of mobilizing ecosystem processes that support and regulate primary production is the key to overcoming this challenge (Egger 1987; Breman and Sissoko 1998; Affholder et al. 2008; Chevassus-au-Louis and Griffon 2008; Bonny 2011; Doré et al. 2011; Bommarco et al. 2013; Hochman et al. 2013). By accepting this sense, we are justified in using the expressions “ecological intensification” and “ecologically intensive agriculture” interchangeably, with the latter expression suggesting more explicitly the forceful mobilization of ecological processes for high yields, and not simply the search for a combination of increased intensification and low environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or at least for farming systems where yields and the use of exogenous inputs are both low – which does not prevent them from being very intensive in labor, in knowledge or in the mobilization of ecological processes.

References

  • Affholder, F. (1997). Empirically modelling the interaction between intensification and climatic risk in semiarid regions. Field Crops Research, 52, 79–93.

    Article  Google Scholar 

  • Affholder, F., Jourdain, D., Morize, M., Quang, D. D., & Ricome, A. (2008). Éco-intensification dans les montagnes du Vietnam. Contraintes à l’adoption de la culture sur couvertures végétales. Cahiers Agricultures, 17, 289–296.

    Google Scholar 

  • Affholder, F., Jourdain, D., Quang, D. D., Tuong, T. P., Morize, M., & Ricome, A. (2010). Constraints to farmers’ adoption of direct-seeding mulch-based cropping systems: A farm scale modeling approach applied to the mountainous slopes of Vietnam. Agricultural Systems, 103, 51–62.

    Article  Google Scholar 

  • Andriarimalala, J. H., Rakotozandriny, J. N., Andriamandroso, A. L. H., Penot, E., Naudin, K., Dugue, P., Tillard, E., Decruyenaere, V., & Salgado, P. (2013). Creating synergies between conservation agriculture and cattle production in crop-livestock farms: A study case in the lake Alaotra region of Madagascar. Experimental Agriculture, 49, 352–365.

    Article  Google Scholar 

  • Bainville, S., Affholder, F., Figuié, M., & Madeira, N. J. (2005). Les transformations de l’agriculture familiale de la commune de Silvânia: Une petite révolution agricole dans les Cerrados brésiliens. Cahiers Agricultures, 14, 103–110.

    Google Scholar 

  • Baldé, A. B., Scopel, E., Affholder, F., Corbeels, M., Silva, F. A. M. D., Xavier, J. H. V., & Wery, J. (2011). Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crops Research, 124, 240–251.

    Article  Google Scholar 

  • Banerjee, A. V., & Duflo, E. (2009). L’approche expérimentale en économie du développement. Revue d'Economie Politique, 119, 691–726.

    Google Scholar 

  • Bergen, S. D., Bolton, S. M., & Fridley, L. J. (2001). Design principles for ecological engineering. Ecological Engineering, 18, 201–210.

    Article  Google Scholar 

  • Blanchart, E., Bernoux, M., Sarda, X., Siqueira, N. M., Cerri, C. C., Piccolo, M. D. C., Douzet, J.-M., & Scopel, E. (2007). Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agriculturae Conspectus Scientificus, 72, 81–87.

    Google Scholar 

  • Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution, 28, 230–238.

    Article  PubMed  Google Scholar 

  • Bonny, S. (2011). L’agriculture écologiquement intensive: Nature et défis. Cahiers Agricultures, 20(6), 451–462.

    Google Scholar 

  • Breman, H., & Sissoko, K. (1998). L’intensification agricole au Sahel (1000 pp.). Paris: Économie et développement, Karthala.

    Google Scholar 

  • Carberry, P. S., Liang, W. -L., Twomlow, S., Holzworth, D. P., Dimes, J. P., McClelland, T., Huth, N. I., Chen, F., Hochman, Z., & Keating, B. A. (2013). Scope for improved eco-efficiency varies among diverse cropping systems. Proceedings of the National Academy of Sciences, 110, 8381–8386.

    Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. National Academy of Sciences Colloquium, 96, 5952–5959.

    Article  CAS  Google Scholar 

  • Chevassus-au-Louis, B., & Griffon, M. (2008). La nouvelle modernité: Une agriculture productive à haute valeur écologique. Déméter, Économie et stratégies agricoles, 14, 7–48.

    Google Scholar 

  • Dalgaard, T., Hutchings, N. J., & Porter, J. R. (2003). Agroecology, scaling and interdisciplinarity. Agriculture, Ecosystems and Environment, 100, 39–51.

    Article  Google Scholar 

  • Demont, M., Jouve, P., Stessens, J., & Tollens, E. (2007). Boserup versus Malthus revisited: Evolution of farming systems in northern Cote d’Ivoire. Agricultural Systems, 93, 215–228.

    Article  Google Scholar 

  • Doré, T., Makowski, D., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., & Tittonell, P. (2011). Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 34, 197–210.

    Article  Google Scholar 

  • Egger, K. (1987). L’intensification écologique conservation (LAE) et amélioration des sols tropicaux par les systèmes agro-sylvo-pastoraux. Aménagements hydro-agricoles et systèmes de production, Montpellier, Cirad-DSA. Documents systèmes agraires, 2(6), 129–135.

    Google Scholar 

  • Francis, C., Breland, T. A., Østergaard, E., Lieblein, G., & Morse, S. (2013). Phenomenon-based learning in agroecology: A prerequisite for transdisciplinarity and responsible action. Agroecology and Sustainable Food Systems, 37(1), 60–75.

    Google Scholar 

  • Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114, 23–34.

    Article  Google Scholar 

  • Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E., & Tittonell, P. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 124, 468–472.

    Article  Google Scholar 

  • Hochman, Z., Carberry, P. S., Robertson, M. J., Gaydon, D. S., Bell, L. W., & McIntosh, P. C. (2013). Prospects for ecological intensification of Australian agriculture. European Journal of Agronomy, 44, 109–123.

    Article  Google Scholar 

  • Jagoret, P., Michel-Dounias, I., & Malézieux, E. (2011). Long-term dynamics of cocoa agroforests: A case study in central Cameroon. Agroforestry Systems, 81, 267–278.

    Article  Google Scholar 

  • Jamont, M., Piva, G., & Fustec, J. (2013). Sharing N resources in the early growth of rapeseed intercropped with faba bean: Does N transfer matter? Plant Soil, 371, 641–653.

    Article  CAS  Google Scholar 

  • MacMynowski, D. P. (2007). Pausing at the brink of interdisciplinarity: Power and knowledge at the meeting of social and biophysical science. Ecology and Society, 12, 14.

    Google Scholar 

  • Maris, V. (2010). Philosophie de la biodiversité: Petite éthique pour une nature en péril (214 pp.). Buchet-Chastel.

    Google Scholar 

  • Méndez, V. E., & Bacon, C. M. (2013). Agroecology as a transdisciplinary, participatory, and action-oriented approach. Agroecology and Sustainable Food Systems, 37, 3–18.

    Google Scholar 

  • Naiman, R. J. (1999). A perspective on interdisciplinary science. Ecosystems, 2, 292–295.

    Article  Google Scholar 

  • Parks, S., & Gowdy, J. (2013). What have economists learned about valuing nature? A review essay. Ecosystem Services, 3, e1–e10.

    Article  Google Scholar 

  • Penot, É., Macdowall, C., & Domas, R. (2012). Modeling impact of conservation agriculture adoption on farming systems agricultural incomes. The case of lake Alaotra Region, Madagascar (9 pp.). RIME-PAMPA/CA2AFRICA project. Denmark: IFSA.

    Google Scholar 

  • Rapidel, B., DeClerck, F., Le Coq, J. -F., & Beer, J. (2011). Ecosystem services from agriculture and agroforestry: Measurement and payment (XIX-414 pp.). London: Earthscan Publications.

    Google Scholar 

  • Ratnadass, A., Michellon, R., Randriamanantsoa, R., & Séguy, L. (2006). Effects of soil and plant management on crop pests and diseases. In N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Palm, J. Pretty, P. Sanchez, N. Sanginga, & J. Thies (Eds.), Biological Approaches for Sustainable Soil Systems (pp. 589–602). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Ratnadass, A., Blanchart, E., & Lecomte, P. (2013a). Ecological interactions within the biodiversity of cultivated systems. In É. Hainzelin (Ed.), Cultivating biodiversity to transform agriculture (pp. 141–180). Versailles: Quæ/Springer.

    Chapter  Google Scholar 

  • Rusinamhodzi, L., Corbeels, M., Nyamangara, J., & Giller, K. E. (2012). Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research, 136, 12–22.

    Article  Google Scholar 

  • Scopel, E., Triomphe, B., Affholder, F., Macena da Silva, F. A., Corbeels, M., Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., Mendes, I. D. C., & Tourdonnet, S. D. (2012). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development, 33, 113–130.

    Article  Google Scholar 

  • Torquebiau, E. F. (2000). A renewed perspective on agroforestry concepts and classification. Comptes rendus de l’Académie des sciences, Série III Sciences de la vie, 323, 1009–1017.

    CAS  Google Scholar 

  • Vakulabharanam, V. (2013). Fighting poverty through good governance using randomized experiments. Development and Change, 44(4), 1027–1037.

    Article  Google Scholar 

  • Wegner, G., & Pascual, U. (2011). Cost-benefit analysis in the context of ecosystem services for human well-being: A multidisciplinary critique. Global Environmental Change: Human and Policy Dimensions, 21, 492–504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Affholder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Éditions Quæ

About this chapter

Cite this chapter

Affholder, F., Parrot, L., Jagoret, P. (2015). Lessons and Perspectives of Ecological Intensification. In: Sourisseau, JM. (eds) Family Farming and the Worlds to Come. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9358-2_18

Download citation

Publish with us

Policies and ethics