Skip to main content

Ecological Responses of Parasitoids, Predators and Associated Insect Communities to the Climate-Driven Expansion of the Pine Processionary Moth

  • Chapter
  • First Online:
Processionary Moths and Climate Change : An Update

Abstract

The expansion of the pine processionary moth with climate warming is likely to modify the interactions with its associated arthropod and vertebrate communities of parasitoids, predators and competitors. A first section details the response of some egg parasitoids to moth expansion. Then, we investigate how insectivorous vertebrates (specialist birds, generalist birds and generalist bats) may or not be efficient predators of T. pityocampa on the range expansion gradients. Finally, we discuss whether the expansion of the moth in inner Alpine valleys may become a serious threat to the endangered Spanish moon moth by competing for the same pine needle resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams, P. A., & Ginzburg, L. R. (2000). The nature of predation: Prey dependent, ratio dependent or neither? Trends in Ecology & Evolution, 15, 337–341.

    Google Scholar 

  • Arnaldo, P. S., & Torres, L. M. (2006). Effect of different hosts on Thaumetopoea pityocampa populations in northeast Portugal. Phytoparasitica, 34, 523–530.

    Google Scholar 

  • Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R., & Bontadina, F. (2011). Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: Implications for conservation. European Journal of Wildlife Research, 57, 843–849.

    Google Scholar 

  • Augustin, S., Guichard, S., Heitland, W., Freise, J., Svatos, A., & Gilbert, M. (2009a). Monitoring and dispersal of the invading Gracillariidae Cameraria ohridella. Journal of Applied Entomology, 133, 58–66.

    Google Scholar 

  • Augustin, S., Settele, J., Roques, A., Garcia, J., Lopez-Vaamonde, C., Kenis, M., et al. (2009b). A stowaway species probably arriving from the Balkans, the horse chestnut leafminer, Cameraria ohridella. In J. Settele, L. D. Penev, T. A. Georgiev, R. Grabaum, V. Grobelnik, V. Hammen, S. Klotz, M. Kotarac, & I. Kühn (Eds.), Atlas of biodiversity risk (pp. 160–161). Sofia: Pensoft Publishers.

    Google Scholar 

  • Barbaro, L., & Battisti, A. (2011). Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biological Control, 56, 107–114.

    Google Scholar 

  • Barbaro, L., Couzi, L., Bretagnolle, V., Nezan, J., & Vetillard, F. (2008). Multi-scale habitat selection and foraging ecology of the Eurasian hoopoe (Upupa epops) in pine plantations. Biodiversity and Conservation, 17, 1073–1087.

    Google Scholar 

  • Barbaro, L., Dulaurent, A. M., Payet, K., Blache, S., Vetillard, F., & Battisti, A. (2013). Winter bird numerical responses to a key defoliator in mountain pine forests. Forest Ecology and Management, 296, 90–97.

    Google Scholar 

  • Barber, N. A., Marquis, R. J., & Tori, W. P. (2008). Invasive prey impacts regional distribution of native predators. Ecology, 89, 2678–2683.

    PubMed  Google Scholar 

  • Barbosa, P., Letourneau, D., & Agrawal, A. (2012). Insect outbreaks revisited. Chichester: Wiley, 480 p.

    Google Scholar 

  • Battisti, A. (1988). Host-plant relationships and population dynamics of the pine processionary caterpillar Thaumetopoea pityocampa (Denis & Schiffermüller). Journal of Applied Entomology, 105, 393–402.

    Google Scholar 

  • Battisti, A. (1989). Field studies on the behavior of 2 egg parasitoids of the pine processionary moth Thaumetopoea pityocampa. Entomophaga, 34, 29–38.

    Google Scholar 

  • Battisti, A., Colazza, S., Roversi, P. F., & Tiberi, R. (1988). Alternative hosts of Ooencyrtus pityocampae Mercet (Hymenoptera: Encyrtidae) in Italy. Redia, 71, 321–328.

    Google Scholar 

  • Battisti, A., Bernardi, M., & Ghiraldo, C. (2000). Predation by the hoopoe on pupae of Thaumetopoea pityocampa and the likely influence on other natural enemies. BioControl, 45, 311–323.

    Google Scholar 

  • Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., et al. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15, 2084–2096.

    Google Scholar 

  • Battisti, A., Stastny, M., Buffo, E., & Larsson, S. (2006). A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12, 662–671.

    Google Scholar 

  • Battisti, A., Avcı, M., Avtzis, D., Ben Jamaa, M. L., Berardi, L., Berretima, W., et al. (2014). Natural history of the processionary moths (Thaumetopoea spp.): New insights in relation to climate change. In A. Roques (Ed.), Processionary moths and climate change: An update. Dordrecht: Springer (Chapter 2).

    Google Scholar 

  • Becerra, J. X. (2003). Synchronous coadaptation in an ancient case of herbivory. Proceedings of the National Academy of Sciences, 100, 12804–12807.

    CAS  Google Scholar 

  • Benrey, B., & Denno, R. F. (1997). The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology, 78, 987–999.

    Google Scholar 

  • Benz, G. (1974). Negative Rückkoppelung durch Raum-und Nahrungskonkurrenz sowie zyklischeVeränderung der Nahrungsgrundlage als Regelprinzip in der Populations-dynamik des Grauen Lärchenwicklers, Zeiraphera diniana (Guenée). Zeitschriftfür Angewandte Entomologie, 76, 196–228.

    Google Scholar 

  • Berggren, Å., Björkman, C., Bylund, H., & Ayres, M. P. (2009). The distribution and abundance of animal populations in a climate of uncertainty. Oikos, 118, 1121–1126.

    Google Scholar 

  • Biliotti, E. (1958). Les parasites et prédateurs de Thaumetopoea pityocampa Schiff. (Lepidoptera). Entomophaga, 3(1), 23–24.

    Google Scholar 

  • Boettner, G. H., Elkinton, J. S., & Boettner, C. J. (2000). Effects of a biological control introduction on three nontarget native species of saturniid moths. Conservation Biology, 14, 1798–1806.

    Google Scholar 

  • Bøhn, T., Amundsen, P. A., & Sparrow, A. (2008). Competitive exclusion after invasion? Biological Invasions, 10, 359–368.

    Google Scholar 

  • Bretagnolle, V., & Gillis, H. (2010). Predator–prey interactions and climate change. In A. P. Moller, W. Fiedler, & P. Berthold (Eds.), Effects of climate change on birds (pp. 227–248). New York: Oxford University Press.

    Google Scholar 

  • Brotons, L., & Herrando, S. (2003). Effect of increased food abundance near forest edges on flocking patterns of Coal Tit Parus ater winter groups in mountain coniferous forests. Bird Study, 50, 106–111.

    Google Scholar 

  • Buckner, C. H. (1967). Avian and mammalian predators of forest insects. Entomophaga, 12, 491–501.

    Google Scholar 

  • Buffo, E., Battisti, A., Stastny, M., & Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 9, 65–72.

    Google Scholar 

  • Carrascal, L. M., Seoane, J., & Villén-Pérez, S. (2013). Temperature and food constraints in wintering birds: An experimental approach in montane Mediterranean oakwoods. Community Ecology, 13, 221–229.

    Google Scholar 

  • Cayuela, L., Hódar, J. A., & Zamora, R. (2011). Is insecticide spraying a viable and cost-efficient management practice to control pine processionary moth in Mediterranean woodlands? Forest Ecology and Management, 261, 1732–1737.

    Google Scholar 

  • Charbonnier, Y., Barbaro, L., Theillout, A., & Jactel, H. (2014). Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE, 9, in press.

    Google Scholar 

  • Chefaoui, R. M., & Lobo, J. M. (2007). Assessing the conservation status of an Iberian moth using pseudo-absences. Journal of Wildlife Management, 71, 2507–2516.

    Google Scholar 

  • Colautti, R. I., Ricciardi, A., Grigorovich, I. A., & MacIsaac, H. J. (2004). Is invasion success explained by the enemy release hypothesis? Ecology Letters, 7, 721–733.

    Google Scholar 

  • Cornelissen, T., & Stiling, A. (2006). Does low nutritional quality act as a plant defence? An experimental test of the slow-growth, high-mortality hypothesis. Ecological Entomology, 31, 32–40.

    Google Scholar 

  • Cornell, H. V., & Hawkins, B. A. (1993). Accumulation of native parasitoid species on introduced herbivores – A comparison of hosts as natives and hosts as invaders. The American Naturalist, 141, 847–865.

    CAS  PubMed  Google Scholar 

  • Crawford, H. S., & Jennings, D. T. (1989). Predation by birds on spruce budworm Choristoneura fumiferana: Functional, numerical, and total responses. Ecology, 70, 152–163.

    Google Scholar 

  • Cuadrado, M., & Dominguez, F. (1996). Phenology and breeding success of red-necked nightjar Caprimulgus ruficollis in Southern Spain. Journal für Ornithologie, 137, 249–253.

    Google Scholar 

  • Démolin, G. (1969). Comportement des adultes de Thaumetopoea pityocampa Schiff. Dispersion spatiale, importance écologique. Annales des Sciences Forestières, 26, 89–102.

    Google Scholar 

  • Dempster, J. P. (1983). The natural control of butterflies and moths. Biological Reviews, 58, 461–481.

    Google Scholar 

  • Diaz, M., Illera, J. C., & Atienza, J. C. (1998). Food resource matching by foraging tits Parus spp during spring-summer in a Mediterranean mixed forest: Evidence for an ideal free distribution. Ibis, 140, 654–660.

    Google Scholar 

  • Dulaurent, A. M., Rossi, J. P., Deborde, C., Moing, A., Menassieu, P., & Jactel, H. (2011). Honeydew feeding increased the longevity of two egg parasitoids of the pine processionary moth. Journal of Applied Entomology, 135, 184–194.

    Google Scholar 

  • Ethier, K., & Fahrig, L. (2011). Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecology, 26, 865–876.

    Google Scholar 

  • Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review of Ecology, Evolution and Systematics, 40, 481–501.

    Google Scholar 

  • Gale, G. A., DeCecco, J. A., Marshall, M. R., McClain, W. R., & Cooper, R. J. (2001). Effects of gypsy moth defoliation on forest birds: An assessment using breeding bird census data. Journal of Field Ornithology, 72, 291–304.

    Google Scholar 

  • Garcia-Navas, V., Ferrer, E. S., & Sanz, J. J. (2013). Prey choice, provisioning behaviour, and effects of early nutrition on nestling phenotype of titmice. Ecoscience, 20, 9–18.

    Google Scholar 

  • Gebiola, M., Lopez-Vaamonde, C., Nappo, A. G., & Bernardo, U. (2014). Did the parasitoid Pnigalio mediterraneus (Hymenoptera: Eulophidae) track the invasion of the horse chestnut leafminer? Biological invasions, 16, 843–857.

    Google Scholar 

  • Géri, C. (1980). Application des méthodes d’études démécologiques aux insectes défoliateurs forestiers. Cas de Diprion pini L. (Hyménoptère Diprionidae). Dynamique des populations de la processionnaire du pin Thaumetopoea pityocampa (Lépidoptère Thaumetopoeidae) dans l’île de Corse. Doctorat d’Etat, Université Paris Sud, Orsay, France, 289 p.

    Google Scholar 

  • Géroudet, P. (1963). Les passereaux II. Des mésanges aux fauvettes. Paris/Neuchâtel: Delachaux et Niestlé, 308 p.

    Google Scholar 

  • Gill, B. J. (1980). Foods of the shining cuckoo (Chrysococcyx lucidus, Aves: Cuculidae) in New Zealand. New Zealand Journal of Ecology, 3, 138–140.

    Google Scholar 

  • Glen, D. M. (2004). Birds as predators of lepidopterous larvae. In H. van Hemden & M. Rothschild (Eds.), Insect and bird interactions (pp. 89–106). Andover: Intercept.

    Google Scholar 

  • Goiti, U., Vecin, P., Garin, I., Saloña, M., & Aihartza, J. R. (2003). Diet and prey selection in Kuhl’s pipistrelle Pipistrellus kuhlii (Chiroptera: Vespertilionidae) in south-western Europe. Acta Theriologica, 48, 457–468.

    Google Scholar 

  • Gonzalez Cano, J. M. (1981). Predacion de procesionaria del pino por vertebrados en la zona de Mora de Rubielos (Teruel). Boletin de la Estacion Central de Ecologia, 10, 53–77.

    Google Scholar 

  • Goussard, F., & Roques, A. (2007). Définition d’indicateurs de suivi des populations d’Isabelle de France Graellsia isabellae galliaegloria (Oberthür, 1922). Revue scientifique Bourgogne Nature, 5, 109–112.

    Google Scholar 

  • Grabenweger, G., Kehrli, P., Zweimueller, I., Augustin, S., Avtzis, N., Bacher, S., et al. (2010). Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe. Biological Invasions, 12, 2797–2813.

    Google Scholar 

  • Grobler, B. C., & Lewis, O. T. (2008). Response of native parasitoids to a range-expanding host. Ecological Entomology, 33, 453–463.

    Google Scholar 

  • Gurevitch, J., & Padilla, D. K. (2004). Are invasive species a major cause of extinctions? Trends in Ecology and Evolution, 19, 470–474.

    PubMed  Google Scholar 

  • Halperin, J. (1990). Natural enemies of Thaumetopoea sp. in Israel. Journal of Applied Entomology, 109, 425–435.

    Google Scholar 

  • Haney, J. C. (1999). Numerical response of birds to an irruption of elm spanworm (Ennomos subsignarius [Hbn.]; Geometridae, Lepidoptera) in old-growth forest of the Appalachian Plateau, USA. Forest Ecology and Management, 120, 203–217.

    Google Scholar 

  • Hanski, I., Henttonen, H., Korpimaki, E., Oksanen, L., & Turchin, P. (2001). Small-rodent dynamics and predation. Ecology, 82, 1505–1520.

    Google Scholar 

  • Haukioja, E. (1990). Induction of Defenses in Trees. Annual Review of Entomology, 36, 25–42.

    Google Scholar 

  • Heisswolf, A., Klemola, T., Andersson, T., & Ruohomaki, K. (2009). Shifting body weight-fecundity relationship in a capital breeder, maternal effects on egg numbers of the autumnal moth under field conditions. Bulletin of Entomological Research, 99, 73–81.

    CAS  PubMed  Google Scholar 

  • Hernández-López, A., Rougerie, R., Augustin, S., Lees, D. C., Tomov, R., Kenis, M., et al. (2011). Host tracking or cryptic adaptation? Phylogeography of Pediobius saulius (Hymenoptera, Eulophidae), a parasitoid of the highly invasive horse-chestnut leafminer. Evolutionary Applications, 5(3), 256–269.

    PubMed Central  Google Scholar 

  • Hill, A. M., & Lodge, D. M. (1999). Replacement of resident crayfishes by an exotic crayfish: The roles of competition and predation. Ecological Applications, 9, 678–690.

    Google Scholar 

  • Hódar, J. A., & Zamora, R. (2004). Herbivory and climatic warming, a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation, 13, 493–500.

    Google Scholar 

  • Hódar, J. A., Castro, J., & Zamora, R. (2003). Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation, 110, 123–129.

    Google Scholar 

  • Hódar, J. A., Zamora, R., Castro, J., & Baraza, E. (2004). Feast and famine, previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris. Acta Oecologica, 26, 203–210.

    Google Scholar 

  • Hódar, J. A., Cayuela, L., & Zamora, R. (2012). Climate change and the incidence of a forest pest in Mediterranean ecosystems, can the North Atlantic Oscillation be used as a predictor? Climatic Change, 113, 699–711.

    Google Scholar 

  • Hódar, J. A., Torres-Muros, L., & Senhadji, K. (2013). Timing and intensity of katydid predation on egg batches of pine processionary moth, no evidence of population control. Agricultural and Forest Entomology, 15, 204–211.

    Google Scholar 

  • Hogstad, O. (2005). Numerical and functional responses of breeding passerine species to mass occurrence of geometrid caterpillars in a subalpine birch forest, a 30-year study. Ibis, 147, 77–91.

    Google Scholar 

  • Holt, R. D. (1977). Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology, 12, 197–229.

    CAS  PubMed  Google Scholar 

  • Honek, A. (1993). Intraspecific variation in body size and fecundity in insects – A general realtionship. Oikos, 66, 483–492.

    Google Scholar 

  • Honkanen, T., Haukioja, E., & Kitunen, V. (1999). Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Functional Ecology, 13, 126–140.

    Google Scholar 

  • Hoyas, J., & López, F. (1998). Distribución del críalo según la abundancia de procesionaria del pino. Quercus, 149, 20–22.

    Google Scholar 

  • Huchon, H., & Démolin, G. (1971). La bioécologie de la processionaire du pin. Dispersion potentielle – Dispersion actuelle. Phytoma, 23, 11–20.

    Google Scholar 

  • Imbert, C.-E. (2012). Expansion d’un ravageur forestier sous l’effet du réchauffement climatique, la processionnaire du pin affecte-t-elle la biodiversité entomologique dans les zones nouvellement colonisées ? Thèse de doctorat, Université d’Orléans, 196 p.

    Google Scholar 

  • Imbert, C.-E., Goussard, F., & Roques, A. (2012). Is the expansion of the pine processionary moth, due to global warming, impacting the endangered Spanish moon moth through an induced change in food quality? Integrative Zoology, 7, 147–157.

    PubMed  Google Scholar 

  • Jung, K., Kaiser, S., Böhm, S., Nieschulze, J., & Kalko, E. K. V. (2012). Moving in three dimensions, effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. Journal of Applied Ecology, 49, 523–531.

    Google Scholar 

  • Kaitaniemi, P., Ruohomaki, K., Tammaru, T., & Haukioja, E. (1999). Induced resistance of host tree foliage during and after a natural insect outbreak. Journal of Animal Ecology, 68, 382–389.

    Google Scholar 

  • Kalka, M. B., Smith, A. R., & Kalko, E. K. V. (2008). Bats limit arthropods and herbivory in a tropical forest. Science, 320, 71.

    CAS  PubMed  Google Scholar 

  • Karp, D. S., & Daily, G. C. (2014). Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology, 95, 1065–1074.

    Google Scholar 

  • Kaunisto, S., Valimaki, P., Kortet, R., Koskimaki, J., Harkonen, S., Kaitala, A., et al. (2012). Avian predation on a parasitic fly of cervids during winter, can host-related cues increase the predation risk? Biological Journal of the Linnean Society, 106, 275–286.

    Google Scholar 

  • Keane, R. M., & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164–170.

    Google Scholar 

  • Kenis, M., Auger-Rozenberg, M. A., Roques, A., Timms, L., Pere, C., Cock, M., et al. (2009). Ecological effects of invasive alien insects. Biological Invasions, 11, 21–45.

    Google Scholar 

  • Kerdelhué, C., Battisti, A., Burban, C., Branco, M., Cassel-Lundhagen, A., İpekdal, K., et al. (2014). Genetic diversity and structure at different spatial scales in the processionary moths. In A. Roques (Ed.), Processionary moths and climate change: An update. Dordrecht: Springer.

    Google Scholar 

  • Kervyn, T., & Libois, R. (2008). The diet of the serotine bat, a comparison between rural and urban environments. Belgian Journal of Zoology, 138, 41–49.

    Google Scholar 

  • Klemola, T., Tanhuanpia, M., Korpimaki, E., & Ruohomaki, K. (2002). Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos, 99, 83–94.

    Google Scholar 

  • Kohnen, A., Richter, I., & Brandl, R. (2012). No concordant phylogeographies of the rose gall wasp Diplolepis rosae (Hymenoptera, Cynipidae) and two associated parasitoids across Europe. PLoS ONE, 7(10), e47156.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1–38.

    PubMed  Google Scholar 

  • Liu, H., & Stiling, P. (2006). Testing the enemy release hypothesis, a review and meta-analysis. Biological Invasions, 8, 1535–1545.

    Google Scholar 

  • Lopez-Sebastian, E., Selfa, J., & Ylla, J. (2004). Primeros datos del parasitismo de Ooencyrtus pityocampae (Mercet, 1921) sobre Graellsia isabellae (Graells, 1849) en condiciones de laboratorio. Graellsia, 60, 121–123.

    Google Scholar 

  • Masutti, L. (1964). Ricerche sui parassiti oofagi della Thaumetopoea pityocampa Schiff. Annali del Centro di Economia Montana delle Venezie, 4, 205–271.

    Google Scholar 

  • Maurel, N., Andrieux, T., Chanselme, D., Braud, Y., Breton, F., Goussard, F., et al. (2013). Cartographie d’Actias isabellae galliaegloria dans les Alpes françaises à l’aide d’un piège attractif non destructif utilisant une phéromone synthétique (Lep. Saturniidae). Oreina, 23, 15–19.

    Google Scholar 

  • Menendez, R., Gonzalez-Megias, A., Lewis, O. T., Shaw, M. R., & Thomas, C. D. (2008). Escape from natural enemies during climate-driven range expansion, a case study. Ecological Entomology, 33, 413–421.

    Google Scholar 

  • Mirchev, P., & Tsankov, G. (2000). Parasitism of egg-batches of pine processionary moth Thaumetopoea pityocampa (Den. and Schiff.) (Lepidoptera, Notodontidae) collected in Portugal. Forest Science, 4, 65–71.

    Google Scholar 

  • Mirchev, P., Schmidt, G. H., & Tsankov, G. (1998). The egg parasitoids of the pine processionary moth Thaumetopoea pityocampa (Den. and Schiff.) in the Eastern Rhodopes, Bulgaria. Bollettino di Zoologia Agraria e di Bachicoltura, 30, 131–140.

    Google Scholar 

  • Mirchev, P., Schmidt, G. H., Tsankov, G., & Pllana, S. (1999). Egg parasitoids of the processionary moth Thaumetopoea pityocampa (Den. and Schiff.) collected in Albania. Bollettino di Zoologia Agraria e di Bachicoltura, 31, 152–165.

    Google Scholar 

  • Mirchev, P., Schmidt, G. H., Tsankov, G., & Avci, M. (2004). Egg parasitoids of Thaumetopoea pityocampa (Den. and Schiff.) (Lep., Thaumetopoeidae) and their impact in SW Turkey. Journal of Applied Entomology, 128, 533–542.

    Google Scholar 

  • Mitchell, C. E., & Power, A. G. (2003). Release of invasive plants from fungal and viral pathogens. Nature, 421, 625–627.

    CAS  PubMed  Google Scholar 

  • Morris, R. F., Cheshire, W. F., Miller, C. A., & Mott, D. G. (1958). The numerical response of avian and mammalian predators during a gradation of the spruce budworm. Ecology, 39, 487–494.

    Google Scholar 

  • Müller, J., Bussler, H., Gossner, M., Rettelbach, T., & Duelli, P. (2008). The European spruce bark beetle Ips typographus in a national park, from pest to keystone species. Biodiversity and Conservation, 17, 2979–3001.

    Google Scholar 

  • Müller, J., Mehr, M., Bässler, C., Fenton, M., Hothorn, T., Pretzsch, H., et al. (2012). Aggregative response in bats, prey abundance versus habitat. Oecologia, 169, 673–684.

    PubMed  Google Scholar 

  • Mumm, R., Schrank, K., Wegener, R., Schulz, S., & Hilker, M. (2003). Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. Journal of Chemical Ecology, 29, 1235–1252.

    CAS  PubMed  Google Scholar 

  • Nakamura, H., & Miyazawa, Y. (1997). Movements, space use and social organisation of radio-tracked common cuckoos during the breeding season in Japan. Japanese Journal of Ornithology, 46, 23–54.

    Google Scholar 

  • Nicholls, J. A., Fuentes-Utrilla, P., Hayward, A., Melika, G., Csóka, G., Nieves-Aldrey, J.-L., et al. (2010). Community impacts of anthropogenic disturbance, natural enemies exploit multiple routes in pursuit of invading herbivore hosts. BMC Evolutionary Biology, 10, 322.

    PubMed Central  PubMed  Google Scholar 

  • Noyes, J. (2003). Universal Chalcidoidea Database. World Wide Web electronic publication. Retrieved November 25, 2013, from http://www.nhm.ac.uk/entomology/chalcidoids/index.html

  • Nykanen, H., & Koricheva, J. (2004). Damage-induced changes in woody plants and their effects on insect herbivore performance, a meta-analysis. Oikos, 104, 247–268.

    Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637–669.

    Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    CAS  PubMed  Google Scholar 

  • Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583.

    CAS  Google Scholar 

  • Patten, M. A., & Burger, J. C. (1998). Spruce budworm outbreaks and the incidence of vagrancy in eastern North American wood-warblers. Canadian Journal of Zoology, 76, 433–439.

    Google Scholar 

  • Peigler, R. S. (1996). Catalog of parasitoids of Saturniidae of the world. Journal of Research on the Lepidoptera, 33, 1–121.

    Google Scholar 

  • Péré, C., Augustin, S., Tomov, R., Peng, L.-H., Turlings, T. C. J., & Kenis, M. (2010). Species richness and abundance of native leaf miners are affected by the presence of the invasive horse-chestnut leaf miner. Biological invasions, 12, 1011–1021.

    Google Scholar 

  • Perez-Contreras, T., & Soler, J. J. (2004). Egg parasitoids select for large clutch sizes and covering layers in pine processionary moths (Thaumetopoea pityocampa). Annales Zoologici Fennici, 41(4), 587–597.

    Google Scholar 

  • Perez-Contreras, T., Soler, J. J., & Soler, M. (2003). Why do pine processionary caterpillars Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae) live in large groups? An experimental study. Annales Zoologici Fennici, 40(6), 505–515.

    Google Scholar 

  • Philpott, S. M., Soong, O., Lowenstein, J. H., Pulido, A. L., Lopez, D. T., Flynn, D. F. B., et al. (2009). Functional richness and ecosystem services, bird predation on arthropods in tropical agroecosystems. Ecological Applications, 19, 1858–1867.

    PubMed  Google Scholar 

  • Pimentel, C., & Nilsson, J.-Å. (2007). Response of great tits Parus major to an irruption of a pine processionary moth Thaumetopoea pityocampa population with a shifted phenology. Ardea, 95, 191–199.

    Google Scholar 

  • Pimentel, C., Calvão, T., & Ayres, M. P. (2011). Impact of climatic variation on populations of pine processionary moth Thaumetopoea pityocampa in a core area of its distribution. Agricultural and Forest Entomology, 13, 273–281.

    Google Scholar 

  • Poykko, H., Rautio, P., Hyvarinen, M., Tuomi, J., Markkola, A., Kuikka, K., et al. (2005). Differential performance of two geometrids on previously defoliated Scots pine. Annales Zoologici Fennici, 42, 497–503.

    Google Scholar 

  • Procter, D., & Harding, P. T. (Eds.). (2005). Red lists for invertebrates: Their application at different spatial scales – Practical issues, pragmatic approaches. Report 367. Peterborough: Joint Nature Conservation Committee, 94 p.

    Google Scholar 

  • Rebelo, H., Tarroso, P., & Jones, G. (2010). Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16, 561–576.

    Google Scholar 

  • Renwick, J. A. A., & Chew, F. S. (1994). Oviposition behaviour in lepidoptera. Annual Review of Entomology, 39, 377–400.

    Google Scholar 

  • Robinet, C., Baier, P., Pennerstorfer, J., Schopf, A., & Roques, A. (2007). Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Global Ecology and Biogeography, 16, 460–471.

    Google Scholar 

  • Robinet, C., Imbert, C.-E., Rousselet, J., Sauvard, D., Garcia, J., Goussard, F., et al. (2012). Human-mediated long-distance jumps of the pine processionary moth in Europe. Biological Invasions, 14, 1557–1569.

    Google Scholar 

  • Rodewald, P. G., & Brittingham, M. C. (2004). Stopover habitats of landbirds during fall, use of edge-dominated and early-successional forests. Auk, 121, 1040–1055.

    Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.

    CAS  PubMed  Google Scholar 

  • Roques, A. (1988). La spécificité des relations entre cônes de conifères et insectes inféodés en Europe occidentale, un exemple d’étude des interactions plantes-insectes. Thèse de Doctorat d’Etat ès Sciences, Université de Pau, 242 pp

    Google Scholar 

  • Roques, L., Rossi, J. P., Berestycki, H., Rousselet, J., Garnier, J., Roquejoffre, J. M., et al. (2014). Modeling the spatio-temporal dynamics of the pine processionary moth. In A. Roques (Ed.), Processionary moths and climate change: An update. Dordrecht: Springer.

    Google Scholar 

  • Roques, A., Rousselet, J., Avci, M., Avtzis, D. N., Basso, A., Battisti, A., et al. (2014). Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. In A. Roques (Ed.), Processionary moths and climate change: An update. Dordrecht: Springer.

    Google Scholar 

  • Rousselet, J., Zhao, R., Argal, D., Simonato, M., Battisti, A., Roques, A., et al. (2010). The role of topography in structuring the demographic history of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera, Notodontidae). Journal of Biogeography, 37, 1478–1490.

    Google Scholar 

  • Sachanowicz, K., Wower, A., & Bashta, A.-T. (2006). Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterologica, 8, 543–548.

    Google Scholar 

  • Schmidt, G. H., Tanzen, E., & Bellin, S. (1999). Structure of egg-batches of Thaumetopoea pityocampa (Den. and Schiff.) (Lep., Thaumetopoeidae), egg parasitoids and rate of egg parasitism on the Iberian Peninsula. Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie, 123, 449–458.

    Google Scholar 

  • Schnitzler, H. U., & Kalko, E. K. V. (2001). Echolocation by insect-eating bats. BioScience, 51, 557–569.

    Google Scholar 

  • Settle, W. H., & Wilson, L. T. (1990). Invasion by the variegated leafhopper and biotic interactions – Parasitism, competition, and apparent competition. Ecology, 71, 1461–1470.

    Google Scholar 

  • Sherry, T. W. (1990). When are birds dietarily specialized? Distinguishing ecological from evolutionary approaches. Studies in Avian Biology, 13, 337–352.

    Google Scholar 

  • Sierro, A., & Arlettaz, R. (1997). Barbastelle bats (Barbastella spp.) specialize in the predation of moths, implications for foraging tactics and conservation. Acta Oecologica, 18, 91–106.

    Google Scholar 

  • Sierro, A., Arlettaz, R., Naef-Daenzer, B., Strebel, S., & Zbinden, N. (2001). Habitat use and foraging ecology of the nightjar Caprimulgus europaeus in the Swiss Alps, towards a conservation scheme. Biological Conservation, 98, 325–331.

    Google Scholar 

  • Smith, B. T., Escalante, P., Hernandez Banos, B., Navarro-Siguenza, A. G., Rohwer, S., & Klicka, J. (2011). The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis. BMC Evolutionary Biology, 11, 136.

    PubMed Central  PubMed  Google Scholar 

  • Smits, A., & Larsson, S. (1999). Effects of previous defoliation on pine looper larval performance. Agricultural and Forest Entomology, 1, 19–26.

    Google Scholar 

  • Smits, A., Larsson, S., & Hopkins, R. (2001). Reduced realised fecundity in the pine looper Bupalus piniarius caused by host plant defoliation. Ecological Entomology, 26, 417–424.

    Google Scholar 

  • Stone, G. N., Lohse, K., Nicholls, J. A., Fuentes-Utrilla, P., Sinclair, F., Schönrogge, K., et al. (2012). Reconstructing community assembly in time and space reveals enemy escape in a Western Palearctic insect community. Current Biology, 22(6), 532–537.

    CAS  PubMed  Google Scholar 

  • Strom, B. L., Roton, L. M., Goyer, R. A., & Meeker, J. R. (1999). Visual and semiochemical disruption of host finding in the southern pine beetle. Ecological Applications, 9, 1028–1038.

    Google Scholar 

  • Symondson, W. O. C., Sunderland, K. D., & Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561–594.

    CAS  PubMed  Google Scholar 

  • Tagmann-Ioset, A., Schaub, M., Reichlin, T. S., Weisshaupt, N., & Arlettaz, R. (2012). Bare ground as a crucial habitat feature for a rare terrestrially foraging farmland bird of Central Europe. Acta Oecologica, 39, 25–32.

    Google Scholar 

  • Tammaru, T., Kaitaniemi, P., & Ruohomaki, K. (1995). Oviposition choices of Epirrita autumnata (Lepidoptera, Geometridae) in relation to its eruptive population dynamics. Oikos, 74, 296–304.

    Google Scholar 

  • Tanhuanpää, M., Ruohomaki, K., & Uusipaikka, E. (2001). High larval predation rate in non-outbreaking populations of a geometrid moth. Ecology, 82, 281–289.

    Google Scholar 

  • Tanzen, E., & Schmidt, G. H. (1995). Identification by meconia of four species of egg parasitoids of Thaumetopoea pityocampa (Den. and Schiff.) (Insecta Lepidoptera Thaumetopoeidae). Bollettino di Zoologia Agraria e di Bachicoltura, 27, 61–70.

    Google Scholar 

  • Thomson, L. J., Macfadyen, S., & Hoffmann, A. A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52, 296–306.

    Google Scholar 

  • Tiberi, R. (1990). Egg parasitoids of the pine processionary caterpillar, Thaumetopoea pityocampa (Den and Schiff) (Lep, Thaumetopoeidae) in Italy – Distribution and activity in different areas. Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie, 110, 14–18.

    Google Scholar 

  • Tsankov, G., & Mirchev, P. (2003). The role of Trichogramma embryophagum (Hartig, 1838) (Hymenoptera, Trichogrammatidae) as a natural regulator of pine processionary moth number (Thaumetopoea pityocampa (Denis et Schiffermüller, 1775) (Lepidoptera, Notodontidae) in Bulgaria. Forest Science, 4, 33–41.

    Google Scholar 

  • Tsankov, G., Schmidt, G. H., & Mirchev, P. (1995). Impact of parasitoids in egg-batches of Thaumetopoea pityocampa (Den. and Schiff.) in Algeria. Bollettino di Zoologia Agraria e di Bachicoltura, 27, 53–60.

    Google Scholar 

  • Tsankov, G., Schmidt, G. H., & Mirchev, P. (1996). Parasitism of egg-batches of the pine processionary moth Thaumetopoea pityocampa (Den. and Schiff.) (Lep, Thaumetopoeidae) in various regions of Bulgaria. Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie, 120, 93–105.

    Google Scholar 

  • Tsankov, G., Schmidt, G. H., & Mirchev, P. (1998). Studies on the egg parasitism in Thaumetopoea pityocampa over a period of four years (1991–1994) at Marikostino/Bulgaria. Anzeiger für Schadlingskunde Pflanzenschutz Umweltschutz, 71, 1–7.

    Google Scholar 

  • Tsankov, G., Mirchev, P., & Matova, M. (2006). Egg parasitoids, rate of parasitism and structure of egg batches of Thaumetopoea pityocampa (Den. and Schiff.) (Lep., Thaumetopoeidae) from the region of Ochrid (Republic of Macedonia). Silva Balcanica, 7, 77–87.

    Google Scholar 

  • Tscharntke, T., Thiessen, S., Dolch, R., & Boland, W. (2001). Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology, 29, 1025–1047.

    CAS  Google Scholar 

  • Tscharntke, T., Bommarco, R., Clough, Y., Crist, T. O., Kleijn, D., Rand, T. A., et al. (2007). Conservation biological control and enemy diversity on a landscape scale. Biological control, 43, 294–309.

    Google Scholar 

  • Valverde, J. A. (1971). Notas sobre la biologia reproductora del crialo Clamator glandarius (L.). Ardeola, numero especial, 591–647.

    Google Scholar 

  • Vaughan, N. (1997). The diets of British bats (Chiroptera). Mammal Review, 27, 77–94.

    Google Scholar 

  • Velky, M., Kanuch, P., & Kristin, A. (2011). Food composition of wintering great tits (Parus major) habitat and seasonal effects. Folia Zoologica, 60, 228–236.

    Google Scholar 

  • Venier, L. A., & Holmes, S. B. (2010). A review of the interaction between forest birds and eastern spruce budworm. Environmental Review, 18, 191–207.

    Google Scholar 

  • Vila, M., Auger-Rozenberg, M. A., Goussard, F., & Lopez-Vaamonde, C. (2009). Effect of non-lethal sampling on life-history traits of the protected moth Graellsia isabelae (Lepidoptera, Saturniidae). Ecological Entomology, 34, 356–362.

    Google Scholar 

  • Visser, J. H. (1986). Host odor perception in phytophagous insectes. Annual Review of Entomology, 31, 121–144.

    Google Scholar 

  • Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change, the need for a yardstick. Proceedings of the Royal Society of London, Series B: Biological Sciences, 272, 2561–2569.

    Google Scholar 

  • Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., et al. (2009). Alien species in a warmer world, risks and opportunities. Trends in Ecology and Evolution, 24, 686–692.

    PubMed  Google Scholar 

  • Waters, D. A. (2003). Bats and moths, what is there left to learn? Physiological Entomology, 28, 237–250.

    Google Scholar 

  • Whelan, C. J., Wenny, D. G., & Marquis, R. J. (2008). Ecosystem services provided by birds. Annals of the New York Academy of Sciences, 1134, 25–60.

    PubMed  Google Scholar 

  • Wigglesworth, V. B. (1972). The principles of insect physiology. London: Chapman & Hall, 827 p.

    Google Scholar 

  • Williams, I. S. (1999). Slow-growth, high-mortality – A general hypothesis, or is it? Ecological Entomology, 24, 490–495.

    Google Scholar 

  • Williams, D. T., Straw, N. A., & Day, K. R. (2005). Performance of the green spruce aphid, Elatobium abietinum (Walker) on previously defoliated Sitka spruce. Agricultural and Forest Entomology, 7, 95–105.

    Google Scholar 

  • Williams-Guillén, K., Perfecto, I., & Vandermeer, J. (2008). Bats limit insects in a neotropical agroforestry system. Science, 320, 70.

    PubMed  Google Scholar 

  • Wilson, J. M., & Barclay, R. M. R. (2006). Consumption of caterpillars by bats during an outbreak of western spruce budworm. The American Midland Naturalist, 155, 244–249.

    Google Scholar 

  • Windmill, J. F. C., Jackson, J. C., Tuck, E. J., & Robert, D. (2006). Keeping up with bats, dynamic auditory tuning in a moth. Current Biology, 16, 2418–2423.

    CAS  PubMed  Google Scholar 

  • Zalucki, M. P., Clarke, A. R., & Malcolm, S. B. (2002). Ecology and behavior of first instar larval Lepidoptera. Annual Review of Entomology, 47, 361–393.

    CAS  PubMed  Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology. New York: Springer, 574 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie-Anne Auger-Rozenberg , Charles-Edouard Imbert , Luc Barbaro or Charles-Edouard Imbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Éditions Quæ

About this chapter

Cite this chapter

Auger-Rozenberg, MA. et al. (2015). Ecological Responses of Parasitoids, Predators and Associated Insect Communities to the Climate-Driven Expansion of the Pine Processionary Moth. In: Roques, A. (eds) Processionary Moths and Climate Change : An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9340-7_7

Download citation

Publish with us

Policies and ethics