Skip to main content

Insect – Tree Interactions in Thaumetopoea pityocampa

  • Chapter
  • First Online:
Processionary Moths and Climate Change : An Update

Abstract

The pine processionary moth is, by far, the most important insect defoliator of pine forests in Southern Europe and North Africa, both in terms of its temporal occurrence, geographic range and socioeconomic impact. Monitoring and pest management actions are therefore required on a regular basis, to ensure the detection, evaluation and mitigation of potential risks to forest and public health. However, we still lack some of the basic knowledge required for relevant analyses of the risk posed by the pine processionary moth. Pest risk is defined as a combination of three components: (1) pest occurrence, which depends on the spatiotemporal dynamics of populations; (2) plant vulnerability to the pest, resulting in a certain amount of damage; and (3) the socioeconomic impact of damage, depending on the potential value of the plants damaged (Jactel et al. 2012). The population dynamics of the processionary moth has been extensively studied, in particular within the context of climate change (see Battisti et al. 2014, Chap. 2, this volume). Several studies have recently addressed the question of tree and forest vulnerability to pine processionary attacks but a comprehensive review of evidence was missing. This is the first objective of this chapter. In particular we were interested in a better understanding of the ecological mechanisms responsible for the host tree selection, at both the species and individual tree levels. In a second part we show that pine susceptibility to the pine processionary moth could be reduced by improving forest diversity at different spatial scales. In the last part of this chapter we provide quantitative estimate of the growth losses caused by defoliations of the pine processionary moth. Altogether this information paves the way for quantitative risk analyses on pine processionary moth infestations based on forest growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abgrall, J. F., & Bouhot, L. (1990). Population fluctuation of the pine processionary (Thaumetopoea pityocampa Schiff.) in France from 1969 to 1989. In Proceedings of the 19th IUFRO World Congress Montreal, Canada, 5–11 August 1990 (pp. 1–5).

    Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684.

    Google Scholar 

  • Barbaro, L., & Battisti, A. (2011). Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biological Control, 56, 107–114.

    Google Scholar 

  • Barbaro, L., Rossi, J. P., Vetillard, F., Nezan, J., & Jactel, H. (2007). The spatial distribution of birds and carabid beetles in pine plantation forests: The role of landscape composition and structure. Journal of Biogeography, 34, 652–664.

    Google Scholar 

  • Barbaro, L., Couzi, L., Bretagnolle, V., Nezan, J., & Vetillard, F. (2008). Multi-scale habitat selection and foraging ecology of the Eurasian hoopoe (Upupa epops) in pine plantations. Biodiversity and Conservation, 17, 1073–1087.

    Google Scholar 

  • Barbaro, L., Dulaurent, A. M., Payet, K., Blache, S., Vetillard, F., & Battisti, A. (2013). Winter bird numerical responses to a key defoliator in mountain pine forests. Forest Ecology and Management, 296, 90–97.

    Google Scholar 

  • Barbaro, L., et al. (2014). Ecological responses of parasitoids, predators and associated insect communities to the climate-driven expansion of pine processionary moth. In A. Roques (Ed.), Processionary Moths and Climate Change: An Update. Dordrecht: Springer.

    Google Scholar 

  • Barbosa, P., Hines, J., Kaplan, I., Martinson, H., Szczepaniec, A., & Szendrei, Z. (2009). Associational resistance and associational susceptibility: Having right or wrong neighbors. Annual Review of Ecology, Evolution, and Systematics, 40, 1–20.

    Google Scholar 

  • Barrento, M. J., Santos, H., Branco, M., & Paiva, M. R. (2008). Monitorização da processionária do pinheiro, Thaumetopoea pityocampa. In M. Branco, C. Valente, & M. R. Paiva (Eds.), Pragas e doenças em pinhal e eucaliptal – desafios para a sua gestão integrada. Lisboa: ISA Press, 234 p.

    Google Scholar 

  • Battisti, A. (1988). Host-plant relationships and population dynamics of the pine processionary caterpillar Thaumetopoea pityocampa (Denis & Schiffermüller). Journal of Applied Entomology, 105, 393–402.

    Google Scholar 

  • Battisti, A., Colazza, S., Roversi, P. F., & Tiberi, R. (1988). Alternative hosts of Ooencyrtus pityocampae Mercet Hymenoptera Encyrtidae in Italy. Redia, 71, 321–328.

    Google Scholar 

  • Battisti, A., Bernardi, M., & Ghiraldo, C. (2000). Predation by the hoopoe on pupae of Thaumetopoea pityocampa and the likely influence on other natural enemies. BioControl, 45, 311–323.

    Google Scholar 

  • Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., & Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15, 2084–2096.

    Google Scholar 

  • Battisti, A., Marini, L., Pitacco, A., & Larsson, S. (2013). Solar radiation directly affects larval performance of a forest insect. Ecological Entomology, 38(6), 553–559.

    Google Scholar 

  • Battisti, A., Avci, M., Avtzis, D.N., Ben Jamaa, M.L., Berardi, L., Berretima, W., Branco, M., Chakali, G., El Alaoui El Fels, M.A., Frérot, B., Hódar, J.A., Ionescu-Mălăncuş, I., İpekdal, K., Larsson, S., Manole, T., Mendel, Z., Meurisse, N., Mirchev, P., Nemer, N. Paiva, M.R., Pino, J., Protasov, A., Rahim, N., Rousselet, J., Santos, H., Sauvard, D., Schopf, A., Simonato, M., Yart, A. & Zamoum, M. (2014). Natural history of the processionary moths (Thaumetopoea spp.): new insights in relation to climate change. In A. Roques (Ed.), Processionary Moths and Climate Change: An Update. Dordrecht: Springer.

    Google Scholar 

  • Bédard, C., Gries, R., Gries, G., & Bennet, R. (2002). Sex pheromone and diel periodicity of Cydia strobilella (Lepidoptera: Tortricidae) pheromonal communication. The Canadian Entomologist, 134, 847–850.

    Google Scholar 

  • Bergeron, Y., Leduc, A., Morin, H., & Joyal, C. (1995). Balsam fir mortality following the last spruce budworm outbreak in north- western Quebec. Canadian Journal of Forestry Research, 25, 1375–1384.

    Google Scholar 

  • Bernays, E. A., & Chapman, R. E. (1994). Host-plant selection by phytophagous insects. New York: Chapman & Hall, 312 p.

    Google Scholar 

  • Bibby, C. J., Aston, L., & Bellamy, P. E. (1989). Effects of broadleaved trees on birds of upland conifer plantations in North Wales. Biological Conservation, 49, 17–29.

    Google Scholar 

  • Blenkinsop, S., & Fowler, H. J. (2007). Changes in European drought characteristics projected by the PRUDENCE regional climate models. International Journal of Climatology, 27(12), 1595–1610.

    Google Scholar 

  • Boege, K. (2005). Influence of plant ontogeny on compensation to leaf damage. American Journal of Botany, 92(10), 1632–1640.

    PubMed  Google Scholar 

  • Bonsignore, C. P., & Manti, F. (2013). Influence of habitat and climate on the capture of male pine processionary moths. Bulletin of Insectology, 66, 27–34.

    Google Scholar 

  • Bories, N., Samalens, J., Guyon, D., Breda, N., & Wigneron, J. (2012). Monitoring pine defoliation due to the processionary moth at regional scale from MODIS time series. In Geoscience and remote sensing symposium (IGARSS), 2012 IEEE International (pp. 3383–3386). Piscataway: IEEE.

    Google Scholar 

  • Boughey, K. L., Lake, I. R., Haysom, K. A., & Dolman, P. M. (2011). Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK. Biological Conservation, 144, 2300–2310.

    Google Scholar 

  • Breuer, M., Devkota, B., Douma-Petridou, E., Koutsaftikis, A., & Schmidt, G. H. (1989). Studies on the exposition and temperature of nests of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) in Greece. Journal of Applied Entomology, 107, 370–375.

    Google Scholar 

  • Buck-Sorlin, G. H., & Bell, A. D. (2000). Models of crown architecture in Quercus petraea and Q. robur: Shoot lengths and bud numbers. Forestry, 73(1), 1–19.

    Google Scholar 

  • Buffo, E., Battisti, A., Stastny, M., & Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 9, 65–72.

    Google Scholar 

  • Buxton, R. D. (1990). The influence of host tree species on timing of pupation of Thaumetopoea pityocampa Schiff. (Lep., Thaumetopoeidae) and its exposure to parasitism by Phryxe caudata Rond. (Dipt., Larvaevoridae). Journal of Applied Entomology, 109, 302–310.

    Google Scholar 

  • Calas, J. E. A. (1897). La processionnaire du pin (Cnethocampa pityocampa). Revue des Eaux et Forêts, 36, 705–723.

    Google Scholar 

  • Cappucino, N., Houle, M. J., & Stein, J. (1999). The influence of understorey nectar resources on parasitism of the spruce budworm Choristoneura fumiferana in the field. Agricultural and Forest Entomology, 1, 33–36.

    Google Scholar 

  • Carrillo-Gavilán, A., Moreira, X., Zas, R., Vila, M., & Sampedro, L. (2012). Early resistance of alien and native pines against two native generalist insect herbivores: No support for the natural enemy hypothesis. Functional Ecology, 26, 283–293.

    Google Scholar 

  • Carus, S. (2009). Effects of defoliation caused by the processionary moth on growth of Crimean pines in western Turkey. Phytoparasitica, 37, 105–114.

    Google Scholar 

  • Castagneyrol, B., & Jactel, H. (2012). Unravelling plant-animal diversity relationships: A meta-regression analysis. Ecology, 93(9), 2115–2124.

    PubMed  Google Scholar 

  • Castagneyrol, B., Lagache, L., Giffard, B., Kremer, A., & Jactel, H. (2012). Genetic Diversity increases insect herbivory on oak saplings. PLoS ONE, 7(8), e44247.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castagneyrol, B., Giffard, B., Péré, P., & Jactel, H. (2013). Plant apparency, an overlooked driver of associational resistance to insect herbivory. Journal of Ecology, 101(2), 418–429.

    Google Scholar 

  • Castagneyrol, B., Jactel, H., Charbonnier, Y., Barbaro, L., & Dulaurent-Mercadal, A. M. (2014). Egg mortality in the pine processionary moth: Habitat diversity, microclimate and predation effects. Agricultural and Forest Entomology, 16, 284–292.

    Google Scholar 

  • Castells, E., & Berenbaum, M. (2008). Host plant selection by a monophagous herbivore is not mediated by quantitative changes in unique plant chemistry: Agonopterix alstroemeriana and Conium maculatum. Arthropod-Plant Interactions, 2, 43–51.

    Google Scholar 

  • Da Silva, M. D. R. G., Mateus, E. P., Munha, J., Drazyk, A., Farall, M. H., Paiva, M. R., Das Neves, H. J. C., & Mosandl, A. (2001). Differentiation of ten pine species from central Portugal by monoterpene enantiomer-selective composition analysis using multidimensional gas chromatography. Chromatographia, 53(Suppl. Part 2), 412–416.

    Google Scholar 

  • De Somviele, B., Lyytikainen-Saarenmaa, P., & Niemela, P. (2007). Stand edge effects on distribution and condition of Diprionid sawflies. Agricultural and Forest Entomology, 9, 17–30.

    Google Scholar 

  • Démolin, G. (1965). Grégarisme et subsocialité chez Thaumetopoea pityocampa Schiff. Nids d’hiver – activité de tissage. In Actes du 5 ème Congrès de l’Union Internationale des Insectes Sociaux Toulouse, France (pp. 69–77).

    Google Scholar 

  • Démolin, G. (1969a). Comportement des adultes de Thaumetopoea pityocampa Schiff. Dispersion spatiale, importance écologique. Annales des Sciences Forestières, 26, 89–102.

    Google Scholar 

  • Démolin, G. (1969b). Bioecología de la procesionaria del pino. Thaumetopoea pityocampa Schiff. Incidencias de los factores climáticos. Boletin del Servicio de Plagas Forestales, 23, 9–24.

    Google Scholar 

  • Démolin, G. (1971). Incidences de quelques facteurs agissant sur le comportement social des chenilles de Thaumetopoea pityocampa Schiff. (Lepidoptera) pendant la période des processions de nymphose. Répercussion sur l’efficacité des parasites. Annales de Zoologie, Ecologie Animale (H.S.), 33–56.

    Google Scholar 

  • Démolin, G., (1974). Réflexions générales sur la diapause et lesdiapauses renforcées chez la processionnaire du pin, Thaumetopoea pityocampa Denis et Schiff., Lepidoptera Thaumetopoeidae. Compte-rendu de la Direction Générale de la Recherche Scientifique et Technique.

    Google Scholar 

  • Devkota, B., & Schmidt, G. H. (1990). Larval development of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) from Greece as influenced by different host plants under laboratory conditions. Journal of Applied Entomology, 109, 321–330.

    Google Scholar 

  • Donald, P. F., Fuller, R. J., Evans, A. D., & Gough, S. J. (1998). Effects of forest management and grazing on breeding bird communities in plantations of broadleaved and coniferous trees in western England. Biological Conservation, 85, 183–197.

    Google Scholar 

  • Dulaurent, A. M. (2010). Effet de la diversité des essences forestières sur les niveaux de population de la processionnaire du pin (Thaumetopoea pityocampa), à différentes échelles spatiales, dans la forêt des Landes de Gascogne, thèse de doctorat, Université Bordeaux I, 164 p.

    Google Scholar 

  • Dulaurent, A. M., Porté, A. J., van Halder, I., Vétillard, F., Menassieu, P., & Jactel, H. (2011). A case of habitat complementation in forest pests: Pine processionary moth pupae survive better in open areas. Forest Ecology and Management, 261, 1069–1076.

    Google Scholar 

  • Dulaurent, A. M., Porté, A. J., van Halder, I., Vétillard, F., Menassieu, P., & Jactel, H. (2012). Hide and seek in forests: Colonization by the pine processionary moth is impeded by the presence of nonhost trees. Agricultural and Forest Entomology, 14, 19–27.

    Google Scholar 

  • Endara, M. J., & Coley, P. D. (2011). The resource availability hypothesis revisited: A meta‐analysis. Functional Ecology, 25(2), 389–398.

    Google Scholar 

  • EPPO. (2004). EPPO Standards: Thaumetopoea pityocampa- PM7/37. Bulletin OEPP/EPPO Bulletin, 34, 295–298.

    Google Scholar 

  • Ericsson, A., Larsson, S., & Tenow, O. (1980). Effects of early and late season defoliation on growth and carbohydrate dynamics in Scots pine. Journal of Applied Ecology, 17, 747–769.

    Google Scholar 

  • Esteban, L. G., Martín, J. A., Palacios, P., Fernández, F. G., & López, R. (2010). Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees, 24, 19–30.

    Google Scholar 

  • Eveleigh, E. S., McCann, K. S., McCarthy, P. C., Pollock, S. J., Lucarotti, C. J., Morin, B., McDougall, G. A., Strongman, D. B., Huber, J. T., & Umbanhowar, J. (2007). Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proceedings of the National Academy of Sciences of the United States of America, 104, 16976–16981.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eyles, A., Pinkard, E. A., & Mohammed, C. (2009). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 29(6), 753–764.

    CAS  PubMed  Google Scholar 

  • Floater, G. J., & Zalucki, M. P. (2000). Habitat structure and egg distributions in the processionary caterpillar Ochrogaster lunifer: Lessons for conservation and pest management. Journal of Applied Ecology, 37(1), 87–99.

    Google Scholar 

  • Fordyce, J. A., & Agrawal, A. A. (2001). The role of plant trichomes and caterpillar group size on growth and defense of the pipevine swallowtail, Battus philenor. Journal of Animal Ecology, 70, 997–1005.

    Google Scholar 

  • Geiger, F., Wäckers, F., & Bianchi, F. J. J. A. (2009). Hibernation of predatory arthropods in semi-natural habitats. Biocontrol, 54, 529–535.

    Google Scholar 

  • Géri, C. (1983a). Repartition et evolution des populations de la processionnaire du pin, Thaumetopoea pityocampa Schiff, (Lep., Thaumetopoeidae) dans les montagnes corses. I. Regimes d’apparition de l’insecte et dynamique des populations. Acta Oecologica, Oecologia Applicata, 4, 247–268.

    Google Scholar 

  • Géri, C. (1983b). Dynamique de la processionnaire du pin dans la vallée de Niolo en Corse au cours des cycles 1965–1966, 1967–1968, 1969–1970. Rôle de certains caractères du milieu forestier. Annals of Forest Science, 40, 123–156.

    Google Scholar 

  • Géri, C., Millier, C., & Xeuxet, D. (1985). Mesure des populations de processionaire du pin Thaumetopoea pityocampa Schiff. (Lepidoptère Thaumetopoeidae) au Mont Ventoux. Annals of Forest Science, 42, 143–184.

    Google Scholar 

  • Giffard, B., Corcket, E., Barbaro, L., & Jactel, H. (2012). Bird predation enhances tree seedling resistance to insect herbivores in contrasting forest habitats. Oecologia, 168, 415–424.

    PubMed  Google Scholar 

  • Gómez, A., Alía, R., & Bueno, M. A. (2001). Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci. Annals of Forest Science, 58, 869–875.

    Google Scholar 

  • Hambäck, P. A., & Beckerman, A. P. (2003). Herbivory and plant resource competition: A review of two interacting interactions. Oikos, 101(1), 26–37.

    Google Scholar 

  • Hassan, E. (1971). Beobartungen ueber das Auftreten von Thaumetopoea wilkinsoni Tams. (Lep. Notodontidae) auf Zypern. Anzeiger für Schädlingskunde und Pflanzenschutz, 44, 155–156.

    Google Scholar 

  • Haukioja, E., & Koricheva, J. (2000). Tolerance to herbivory in woody vs. herbaceous plants. Evolutionary Ecology, 14(4–6), 551–562.

    Google Scholar 

  • Hawkes, C. V., & Sullivan, J. J. (2001). The impact of herbivory on plants in different resource conditions, a meta-analysis. Ecology, 82(7), 2045–2058.

    Google Scholar 

  • Heil, M., & Ton, J. (2008). Long-distance signalling in plant defence. Trends in Plant Science, 13, 264–272.

    CAS  PubMed  Google Scholar 

  • Hoch, G., Toffolo, E. P., Netherer, S., Battisti, A., & Schopf, A. (2009). Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology, 11, 313–320.

    Google Scholar 

  • Hódar, J. A., Zamora, R., & Castro, J. (2002). Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecological Entomology, 27, 292–301.

    Google Scholar 

  • Hódar, J. A., Zamora, R., Castro, J., & Baraza, E. (2004). Feast and famine, previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris. Acta Oecologica, 26, 203–210.

    Google Scholar 

  • Huchon, H., & Démolin, G. (1970). La bioécologie de la processionnaire du pin. Dispersion potentielle – Dispersion actuelle. Revue Forestière Française (N° spécial “La lutte biologique en forêt”), 220–234.

    Google Scholar 

  • Hudgeons, J. L., Knutson, A. E., Heinz, K. M., DeLoach, C. J., Dudley, T. L., Pattison, R. R., & Kiniry, J. R. (2007). Defoliation by introduced Diorhabda elongata leaf beetles (Coleoptera, Chrysomelidae) reduces carbohydrate reserves and regrowth of Tamarix (Tamaricaceae). Biological Control, 43, 213–221.

    Google Scholar 

  • Hyvönen, R., Ågren, G. I., Linder, S., Persson, T., Cotrufo, M. F., Ekblad, A., Freeman, M., Grelle, A., Janssens, I. A., Jarvis, P. G., Kellomäki, S., Lindroth, A., Loustau, D., Lundmark, T., Norby, R. J., Oren, R., Pilegaard, K., Ryan, M. G., Sigurdsson, B. D., Strömgren, M., Van Oijen, M., & Wallin, G. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems, a literature review. The New Phytologist, 173, 463–480.

    PubMed  Google Scholar 

  • Jacquet, J.-S., Orazio, C., & Jactel, H. (2012). Defoliation by processionary moth significantly reduces tree growth, a quantitative review. Annals of Forest Science, 69, 857–866.

    Google Scholar 

  • Jacquet, J.-S., Bosc, A., O’Grady, A., & Jactel, H. (2013). Pine growth response to processionary moth defoliation across a 40-year chronosequence. Forest Ecology and Management, 293, 29–38.

    Google Scholar 

  • Jacquet, J.-S., Bosc, A., O’Grady, A., & Jactel, H. (2014). Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Tree Physiology, 34(4), 367–376. doi:10.1093/treephys/tpu018.

  • Jactel, H., & Brockerhoff, E. G. (2007). Tree diversity reduces herbivory by forest insects. Ecology Letters, 10(9), 835–848.

    PubMed  Google Scholar 

  • Jactel, H., Birgersson, G., Andersson, S., & Schlyter, F. (2011). Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia, 166, 703–711.

    CAS  PubMed  Google Scholar 

  • Jactel, H., Petit, J., Desprez-Loustau, M. L., Delzon, S., Piou, D., Battisti, A., & Koricheva, J. (2012a). Drought effects on damage by forest insects and pathogens, a meta-analysis. Global Change Biology, 18, 267–276.

    Google Scholar 

  • Jactel, H., Branco, M., Duncker, P., Gardiner, B., Grodzki, W., Långström, B., Moreira, F., Netherer, S., Nicoll, B., Orazio, C., Piou, D., Schelhaas, M. J., & Tojic, K. (2012b). A multi-criteria risk analysis to evaluate impacts of forest management alternatives on forest health in Europe. Ecology and Society, 17(4), 52.

    Google Scholar 

  • Jakuš, R., Schlyter, F., Zhang, Q. H., Blazenec, M., Vavercák, R., Grodzki, W., Brutovský, D., Lajzová, E., Bengtsson, M., Blum, Z., Turcáni, M., & Gregoire, J.-C. (2003). Overview of development of anti-attractant based technology for spruce protection against Ips typographus, from past failures to future success. Journal of Pest Science, 76, 89–99.

    Google Scholar 

  • Kerdelhué, C., Zane, L., Simonato, M., Salvato, P., Rousselet, J., Roques, A., & Battisti, A. (2009). Quaternary history and contemporary patterns in a currently expanding species. BMC Evolutionary Biology, 9, 220.

    PubMed Central  PubMed  Google Scholar 

  • Kolb, T. E., Dodds, K. A., & Clancy, K. M. (1999). Effect of western spruce budworm defoliation on the physiology and growth of potted Douglas-fir seedlings. Forest Science, 45, 280–291.

    Google Scholar 

  • Kouki, M., & Manetas, Y. (2002). Toughness is less important than chemical composition of Arbutus leaves in food selection by Poecilimon species. New Phytologist, 154, 399–407.

    CAS  Google Scholar 

  • Krause, S. C., & Raffa, K. F. (1996). Differential growth and recovery rates following defoliation in related deciduous and evergreen trees. Trees, 10(5), 308–316.

    Google Scholar 

  • Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., & Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987–990.

    CAS  PubMed  Google Scholar 

  • Larsson, S. (1989). Stressful times for the plant stress: Insect performance hypothesis. Oikos, 56, 277–283.

    Google Scholar 

  • Li, H., Hoch, G., & Körne, C. (2002). Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees, 16, 331–337.

    CAS  Google Scholar 

  • Lombardero, M. J., Alonso-Rodríguez, M., & Roca-Posada, E. P. (2012). Tree insects and pathogens display opposite tendencies to attack native vs. non-native pines. Forest Ecology and Management, 281, 121–129.

    Google Scholar 

  • Luyssaert, S., Ciais, P., Piao, S. L., Schulze, E.-D., Jung, M., Zaehle, S., Schelhaas, M. J., Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J., Loustau, D., Matteucci, G., Magnani, F., Nabuurs, G. J., Verbeeck, H., Sulkava, M., van der Werf, G. R., Janssens, I. A., & Members of the Carboeurope-ip Synthesis Team. (2010). The European carbon balance. Part 3, forests. Global Change Biology, 16, 1429–1450.

    Google Scholar 

  • Markalas, S. (1989). Influence of soil moisture on the mortality, fecundity and diapause of the pine processionary moth (Thaumetopoea pityocampa Schiff.). Journal of Applied Entomology, 107, 211–215.

    Google Scholar 

  • Marković, I., Norris, D. M., & Cekić, M. (1996). Some chemical bases for gypsy moth, Lymantria dispar, larval rejection of green ash, Fraxinus pennsylvanica, foliage as food. Journal of Chemical Ecology, 22, 2283–2298.

    PubMed  Google Scholar 

  • Marquis, R. J., Lill, J. T., & Piccinni, A. (2002). Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos, 99, 531–537.

    Google Scholar 

  • Masutti, L. (1964). Ricerche sui parassiti oofagi della Thaumetopoea pityocampa Schiff. Annali del Centro di Economia Montana delle Venezie, 4, 205–271.

    Google Scholar 

  • Masutti, L., & Battisti, A. (1990). Thaumetopoea pityocampa (Den. & Schiff.) in Italy. Bionomics and perspectives of integrated control. Journal of Applied Entomology, 110, 229–234.

    Google Scholar 

  • Mateus, E. P. (2009). Characterization of Pinus spp. needles by gas chromatography and mass spectrometry, Application to plant-insect interactions. Ph.D. thesis, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 322 p.

    Google Scholar 

  • Mateus, E., Barata, R. C., Zrostlíková, J., Paiva, M. R., & GomesdaSilva, M. D. R. (2010). Characterization of the volatile fraction emitted by Pinus spp. by one and two dimensional chromatographic techniques with mass spectrometric detection. Journal of Chromatography A, 1217, 1845–1855.

    CAS  PubMed  Google Scholar 

  • McGraw, J. B., Gottschalk, K. W., Vavrek, M. C., & Chester, A. L. (1990). Interactive effects of resource availabilities and defoliation on photosynthesis, growth, and mortality of red oak seedlings. Tree physiology, 7, 247–254.

    PubMed  Google Scholar 

  • McNair, C., Gries, G., & Gries, R. (2000). Cherry bark tortrix, Enarmonia formosana: Olfactory recognition of and behavioral deterrence by nonhost angio- and gymnosperm volatiles. Journal of Chemical Ecology, 26, 809–821.

    CAS  Google Scholar 

  • Medhurst, J. L., Battaglia, M., Cherry, M. L., Hunt, M. A., White, D. A., & Beadle, C. L. (1999). Allometric relationships for Eucalyptus nitens (Deane and Maiden) Maiden plantations. Trees, 14(2), 91–101.

    Google Scholar 

  • Mendel, Z. (1988). Host selection by the pine processionary caterpillar Thaumetopoea wilkinsoni. Phytoparasitica, 16, 101–108.

    Google Scholar 

  • Mendel, Z. (2000). The phytophagous insect fauna of Pinus halepensis and P. brutia in the Mediterranean. In G. Ne’eman & L. Trabaud (Eds.), Ecology, biogeography and management of Mediterranean pine forest ecosystems (pp. 217–237). Leiden: Backhuys Publishers.

    Google Scholar 

  • Millard, P., Hester, A., Wendler, R., & Baillie, G. (2001). Interspecific defoliation responses of trees depend on sites of winter nitrogen storage. Functional Ecology, 15, 535–543.

    Google Scholar 

  • Moreau, G., & Quiring, D. T. (2011). Stand structure interacts with previous defoliation to influence herbivore fitness. Forest Ecology and Management, 262, 1567–1575.

    Google Scholar 

  • Moreira, X., Lundborg, L., Zas, R., Carrillo-Gavilán, A., Borg-Karlson, A. K., & Sampedro, L. (2013). Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait. Phytochemistry, 94, 113–122.

    CAS  PubMed  Google Scholar 

  • Najera, A., & Simonetti, J. A. (2010). Enhancing avifauna in commercial plantations. Conservation Biology, 24, 319–324.

    PubMed  Google Scholar 

  • Netherer, S., & Schopf, A. (2010). Potential effects of climate change on insect herbivores in European forests – General aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259(4), 831–838.

    Google Scholar 

  • Nicoli, A., Panzavolta, T., Marziali, L., Peverieri, G. S., Florenzano, G. T., & Tiberi, R. (2008). Further Studies on the Role of Monoterpenes in pine host selection and oviposition of Thaumetopoea pityocampa. Phytoparasitica, 36, 313–321.

    Google Scholar 

  • Ovaska, J., Sari, R., Rintamäki, E. E. V. I., & Vapaavuori, E. (1993). Combined effects of partial defoliation and nutrient availability on cloned Betula pendula saplings II. Changes in net photosynthesis and related biochemical properties. Journal of Experimental Botany, 44(8), 1395–1402.

    CAS  Google Scholar 

  • Paiva, M. R., Mateus, E., Munhá, J., Pimentel, C., & Farrall, M. H. (2001). Pinus spp. chemical composition and host selection by the winter pine processionary moth. In R. Alfaro, K. Day, S. Salom, K. S. S. Nair, H. Evans, A. Liebhold, F. Lieutier, M. Wagner, K. Futai, & K. Suzuki (Eds.), Protection of world forests from insect pests: Advances in research (IUFRO world series, Vol. 11, pp. 141–148). Vienna: IUFRO Secretariat.

    Google Scholar 

  • Paiva, M. R., Mateus, E., Santos, M. H., & Branco, M. R. (2011a). Pine volatiles mediate host selection for oviposition by Thaumetopoea pityocampa (Lep., Notodontidae). Journal of Applied Entomology, 135, 195–203.

    CAS  Google Scholar 

  • Paiva, M. R., Mateus, E., Santos, M. H., & Branco, M. (2011b). Pine processionary moth females use semiochemicals for host selection. IOBC/WPRS Bulletin, 72, 159–164.

    Google Scholar 

  • Palacio, S., Milla, R., Albuixech, J., Pérez-Rontomé, C., Camarero, J. J., Maestro, M., & Montserrat-Martí, G. (2008). Seasonal variability of dry matter content and its relationship with shoot growth and nonstructural carbohydrates. New Phytologist, 180, 133–142.

    CAS  PubMed  Google Scholar 

  • Palacio, S., Hernández, R., Maestro-Martínez, M., & Camarero, J. (2012). Fast replenishment of initial carbon stores after defoliation by the pine processionary moth and its relationship to the re-growth ability of trees. Trees: Structure and Function, 26, 1627–1640.

    Google Scholar 

  • Pasquier-Barre, F., Milsant, F., & Géri, C. (1999). Incidence du feuillage de pin sylvestre sur la survie et le comportement des larves de Diprion pini L. Role des monoterpènes (Hymenoptera, Diprionidae). Annales de la Société entomologique de France, 35, 165–168.

    Google Scholar 

  • Pérez-Contreras, T., & Tierno, J. M. (1997). Estudio de la puesta de Thaumetopoea pityocampa Schiff. 1775 (Lepidoptera, Thaumetopoeidae) en relación al pino parasitado. Boletín de la Asociación española de Entomología, 21, 119–125.

    Google Scholar 

  • Pérez-Contreras, T., Soler, J. J., & Soler, M. (2008). Needle asymmetry, pine vigour and pine selection by the processionary moth Thaumetopoea pityocampa. Acta Oecologica, 33, 213–221.

    Google Scholar 

  • Petrakis, P. V., Roussis, V., Papadimitriou, D., Vagias, C., & Tsitsimpikou, C. (2005). The effect of terpenoid extracts from 15 pine species on the feeding behavioural sequence of the late instars of the pine processionary caterpillar Thaumetopoea pityocampa. Behavioural Processes, 69, 303–322.

    PubMed  Google Scholar 

  • Pinkard, E. A., & Beadle, C. L. (1998). Above-ground biomass partitioning and crown architecture of Eucalyptus nitens following green pruning. Canadian Journal of Forest Research, 28, 1419–1427.

    Google Scholar 

  • Pinkard, E. A., Battaglia, M., & Mohammed, C. L. (2007). Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus. Tree Physiology, 27, 1053–1063.

    CAS  PubMed  Google Scholar 

  • Prokopy, R. J., & Owens, E. D. (1983). Visual detection of plants by herbivorous insects. Annual Review of Entomology, 28(1), 337–364.

    Google Scholar 

  • Puntieri, J. G., Stecconi, M., Brion, C., Mazzini, C., & Grosfeld, J. (2006). Effects of artificial damage on the branching pattern of Nothofagus dombeyi (Nothofagaceae). Annals of Forest Science, 63(1), 101–110.

    Google Scholar 

  • Purtauf, T., Roschewitz, I., Dauber, J., Thies, C., Tscharntke, T., & Wolters, V. (2005). Land- scape context of organic and conventional farms: Influences on carabid beetle diversity. Agriculture Ecosystems and Environment, 108, 165–174.

    Google Scholar 

  • Quentin, A. G., Beadle, C. L., O’Grady, A. P., & Pinkard, E. A. (2011). Effects of partial defoliation on closed canopy Eucalyptus globulus Labilladiere: Growth, biomass allocation and carbohydrates. Forest Ecology and Management, 261, 695–702.

    Google Scholar 

  • Randlkofer, B., Obermaier, E., & Meiners, T. (2007). Mother’s choice of the oviposition site, balancing risk of egg parasitism and need of food supply for the progeny with an infochemical shelter? Chemoecology, 17(3), 177–186.

    Google Scholar 

  • Robertson, B. A., & Hutto, R. L. (2006). A framework for understanding ecological traps and an evaluation of existing evidence. Ecology, 87, 1075–1085.

    PubMed  Google Scholar 

  • Robinet, C., & Roques, A. (2010). Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5, 132–142.

    PubMed  Google Scholar 

  • Robinet, C., Baier, P., Pennerstorfer, J., Schopf, A., & Roques, A. (2007). Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Global Ecology and Biogeography, 16, 460–471.

    Google Scholar 

  • Rocha, S. C. M. (2011). Effect of the diet on the larval development of Thaumetopoea pityocampa and Thaumetopoea wilkinsoni. M.Sc. thesis, ISA, Technical University of Lisbon, Portugal, 64 p.

    Google Scholar 

  • Root, R. B. (1973). Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs, 43(1), 95–124.

    Google Scholar 

  • Roxburgh, S. H., Barrett, D. J., Berry, S. L., Carter, J. O., Davies, I. D., Gifford, R. M., Kirschbaum, M. U. F., McBeth, B. P., Noble, I. R., Parton, W. G., Raupach, M. R., & Roderick, M. L. (2004). A critical review of model estimates of net primary productivity for the Australian continent. Functional Plant Biology, 31, 1043–1059.

    Google Scholar 

  • Russell, E. P. (1989). Enemies hypothesis: A review of the effect of vegetational diversity on predatory insects and parasitoids. Environmental Entomology, 18, 590–599.

    Google Scholar 

  • Saikkonen, K., Neuvonen, S., & Kainulainen, P. (1995). Oviposition and larval performance of European pine sawfly in relation to irrigation, simulated acid rain and resin acid concentration in Scots pine. Oikos, 74, 273–282.

    Google Scholar 

  • Samalens, J.-C., & Rossi, J.-P. (2011). Does landscape composition alter the spatiotemporal distribution of the pine processionary moth in a pine plantation forest? Population Ecology, 53, 287–296.

    Google Scholar 

  • Samalens, J. C., Guyon, D., Bories, N., Breda, N., Piou, D., & Wigneron, J. P. (2012). Satellite-based forest health monitoring using coarse resolution data. Focus on the 2003 and 2011 droughts in France. In Proceedings of the IEEE international geoscience and remote sensing symposium (IGARSS), 22–27 July 2012, Munich, Germany (pp. 3367–3370).

    Google Scholar 

  • Santos, H., Ferreira, C., Paiva, M., & Branco, M. (2008). Pine processionary moth, Thaumetopoea pityocampa, case study: Egg parasitoids. In M. B. Branco, C. Valente, & M. R. Paiva (Eds.), Pragas e doenas em Pinhal e Eucaliptal. Desafios para a sua gesto integrada (pp. 121–133). Lisboa: ISA Press.

    Google Scholar 

  • Santos, H., Paiva, M. R., Tavares, C., Kerdelhué, C., & Branco, M. (2011). Temperature niche shift observed in a Lepidoptera population under allochronic divergence. Journal of Evolutionary Biology, 24(9), 1897–1905.

    CAS  PubMed  Google Scholar 

  • Sbabdji, M., & Kadik, B. (2011). Effects of Atlas cedar (Cedrus atlantica) defoliation on performance of the pine processionary moth (Thaumetopoea pityocampa). Journal of Pest Science, 84, 213–217.

    Google Scholar 

  • Schiebe, C., Blaženec, M., Jakuš, R., Unelius, C., & Schlyter, F. (2011). Semiochemical diversity diverts bark beetle attacks from Norway spruce edges. Journal of Applied Entomology, 135, 726–737.

    Google Scholar 

  • Schiller, G., Conkle, M., & Grunwald, C. (1986). Local differentiation among Mediterranean populations of Aleppo pine in their isoenzymes. Silvae Genetica, 35, 11–19.

    Google Scholar 

  • Schlyter, F. (2012). Semiochemical diversity in practise: Anti-attractant semiochemicals reduces bark beetle attacks on standing trees -a first meta-analysis. Psyche: A Journal of Entomology, 2012, 10, ID 268621.

    Google Scholar 

  • Schopf, R., & Avtzis, N. (1987). Die Bedeutung von Nadelinhaltstoffen für die Disposition von fünf Kiefernarten genenüber Thaumetopoea pityocampa (Schiff.). Journal of Applied Entomology, 105, 340–350.

    Google Scholar 

  • Stastny, M., Battisti, A., Petrucco, T. E., Schlyter, F., & Larsson, S. (2006). Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological Entomology, 31, 481–490.

    Google Scholar 

  • Sun, J. H., Kulhavy, D. L., & Roques, A. (2000). Effects of fertilizer and herbicide application on Nantucket pine tip moth infestation (Lep., Tortricidae). Journal of Applied Entomology, 124, 191–195.

    CAS  Google Scholar 

  • Sweeney, O. F. M., Wilson, M. W., Irwin, S., Kelly, T. C., & O’Halloran, J. O. (2010). The influence of a native tree species mix component on bird communities in non-native coniferous plantations in Ireland. Bird Study, 57, 483–494.

    Google Scholar 

  • Talhouk, S. N., Zurayk, R., & Khuri, S. (2001). Conservation of the coniferous forests of Lebanon, past, present and future prospects. Oryx, 35, 206–215.

    Google Scholar 

  • Tasin, M., Bäckman, A. C., Bengtsson, M., Ioriatti, C., & Witzgall, P. (2006). Essential host plant cues in the grapevine moth. Naturwissenschaften, 93, 141–144.

    CAS  PubMed  Google Scholar 

  • Thompson, J. N., & Pellmyr, O. (1991). Evolution of oviposition behavior and host preference in Lepidoptera. Annual Review of Entomology, 36(1), 65–89.

    Google Scholar 

  • Tiberi, R., Niccoli, A., Curini, M., Epifano, F., Marcotullio, M. C., & Rosati, O. (1999). The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparasitica, 27, 263–272.

    CAS  Google Scholar 

  • Turlings, T. C. J., & Ton, J. (2006). Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odors to enhance the control of agricultural pests. Current Opinion in Plant Biology, 9, 421–427.

    PubMed  Google Scholar 

  • Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749–763.

    PubMed  Google Scholar 

  • Vanderklein, D. W., & Reich, P. B. (1999). The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytologist, 144, 121–132.

    CAS  Google Scholar 

  • Vehviläinen, H., Koricheva, J., & Ruohomaki, K. (2007). Tree species diversity influences herbivore abundance and damage – Meta analysis. Oecologia, 152, 287–298.

    PubMed  Google Scholar 

  • Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., & Hömann, K. H. (1999). Ant-aphid mutualisms: The impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483–491.

    Google Scholar 

  • Voltas, J., Chambel, M., Prada, M., & Ferrio, J. (2008). Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees – Structure and Function, 22, 759–769.

    CAS  Google Scholar 

  • Watt, A. D. (1992). Insect pest population dynamics: Effects of tree species diversity. In M. G. R. Cannell, D. C. Malcolm, & P. A. Robertson (Eds.), The ecology of mixed-species stands of trees (pp. 267–275). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Wise, M. J., & Abrahamson, W. G. (2007). Effects of resource availability on tolerance of herbivory, a review and assessment of three opposing models. The American Naturalist, 169, 443–454.

    PubMed  Google Scholar 

  • Yguel, B., Bailey, R., Tosh, N. D., Vialatte, A., Vasseur, C., Vitrac, X., Jean, F., & Prinzing, A. (2011). Phytophagy on phylogenetically isolated trees, why hosts should escape their relatives. Ecology Letters, 14, 1117–1124.

    PubMed  Google Scholar 

  • Zamoum, M., & Démolin, G. (2004). Mécanismes de régulation des populations de la processionnaire du pin Thaumetopoea pityocampa Denis & Schiffermüller (Lep., Thaumetopoeidae) en zone semi-aride (Algérie). Annales de l'Institut national de la recherche agronomique de Tunisie, 6, 155–173.

    Google Scholar 

  • Zamoum, M., Démolin, G., Bensidi, A., & Belabiod, A. (2003). Possibilités de renforcement de la lutte contre Thaumetopoea pityocampa Denis et Schiffermuller (Lep., Thaumetopoeidae) dans les reboisements de Pinus halepensis du ‘barrage vert’. Annales de la Recherche Forestière en Algérie, 1, 18–26.

    Google Scholar 

  • Zhang, Q. H., & Paiva, M. R. (1998). Female calling behaviour and male response to the sex pheromone in Thaumetopoea pityocampa (Den. and Schiff.) (Lep., Thaumetopoeidae). Journal of Applied Entomology, 122, 353–360.

    Google Scholar 

  • Zhang, Q. H., & Schlyter, F. (2003). Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle, Ips typographus. Oikos, 101, 299–310.

    Google Scholar 

  • Zhang, Q. H., & Schlyter, F. (2004). Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer‐inhabiting bark beetles. Agricultural and Forest Entomology, 6, 1–20.

    CAS  Google Scholar 

  • Zhang, Q. H., Schlyter, F., Battisti, A., Birgersson, G., & Anderson, P. (2003). Electrophysiological responses of Thaumetopoea pityocampa females to host volatiles, implications for host selection of active and inactive terpenes. Journal of Pest Science, 76, 103–107.

    Google Scholar 

  • Zoebelein, G. (1957). Die Rolle des Waldhonigtaus im Nahrungshaushalt forstlich nü tzlicher Insekten. Forstwiss Centralbl, 76, 24–34.

    Google Scholar 

  • Zovi, D., Stastny, M., Battisti, A., & Larsson, S. (2008). Ecological costs on local adaptation of an insect herbivore imposed by host plants and enemies. Ecology, 89(5), 1388–1398.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hervé Jactel , Maria-Rosa Paiva , Hervé Jactel or Jean-Sébastien Jacquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Éditions Quæ

About this chapter

Cite this chapter

Jactel, H. et al. (2015). Insect – Tree Interactions in Thaumetopoea pityocampa . In: Roques, A. (eds) Processionary Moths and Climate Change : An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9340-7_6

Download citation

Publish with us

Policies and ethics