Skip to main content

Genetic Diversity and Structure at Different Spatial Scales in the Processionary Moths

Abstract

This chapter presents the evolutionary history of Thaumetopoea species associated with pines, at different temporal and spatial scales. It corresponds to recent discoveries and ongoing works using sequencing technologies and population genetics. Most of the subchapters focus on the winter pine processionary moths T. pityocampa/T. wilkinsoni including a population with a shifted life cycle. Results concerning the summer pine processionary moth T. pinivora and the evolution of the whole genus are also presented. This chapter gives insights about the effects of Quaternary climate changes in different regions, and allow to study the contemporary changes due to the present climate warming.

Keywords

  • Iberian Peninsula
  • Glacial Refugium
  • Much Recent Common Ancestor
  • Paris Basin
  • Tree Outside Forest

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-9340-7_4
  • Chapter length: 64 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-9340-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17

References

  • Abgrall, J. F. (2001). Le réseau surveillance processionnaire du pin en France 1969–1989. Conception – historique – résultats. Groupement de Nogent sur Vernisson: Cemagref, Division Ecosystèmes Forestiers et Paysages, 104 p.

    Google Scholar 

  • Agenjo, J. (1941). Monografía de la Familia Thaumetopoeidae (Lep.). EOS, Revista Española de Entomología, 17, 69–130.

    Google Scholar 

  • Aimi, A., Larsson, S., Ronnås, C., Frazão, J., & Battisti, A. (2008). Growth and survival of larvae of Thaumetopoea pinivora inside and outside a local outbreak area. Agricultural and Forest Entomology, 10, 225–232.

    Google Scholar 

  • Alexander, R. D., & Bigelow, R. S. (1960). Allochronic speciation in field crickets, and a new species, Acheta veletis. Evolution, 14(3), 334–346.

    Google Scholar 

  • Angilletta, M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249–268.

    Google Scholar 

  • Aronson, D. G., & Weinberger, H. G. (1975). Nonlinear diffusion in population genetics, combustion and nerve propagation. In J. A. Goldstein (Ed.), Lecture notes in mathematics: Vol. 446. Partial differential equations and related topics (pp. 5–49). New York: Springer.

    Google Scholar 

  • Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744.

    PubMed  Google Scholar 

  • Barbaro, L., & Battisti, A. (2011). Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biological Control, 56, 107–114.

    Google Scholar 

  • Battisti, A. (1988). Host-plant relationships and population dynamics of the pine processionary caterpillar Thaumetopoea pityocampa (Denis & Schiffermüller). Journal of Applied Entomology, 105, 393–402.

    Google Scholar 

  • Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., & Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15, 2084–2096.

    Google Scholar 

  • Battisti, A., Holm, G., Fagrell, B., & Larsson, S. (2011). Urticating hairs in arthropods: Their nature and medical significance. Annual Review of Entomology, 56, 203–220.

    CAS  PubMed  Google Scholar 

  • Benigni, M., & Battisti, A. (1999). Variazioni climatiche e processionaria del pino: adattamenti di un defoliatore a condizioni ambientali mutevoli. L’Italia Forestale e Montana, 54, 76–86.

    Google Scholar 

  • Benzie, J., & Stoddart, J. (1992). Genetic structure of outbreaking and non-outbreaking crown-of-thorns starfish (Acanthaster planci) populations on the Great Barrier Reef. Marine Biology, 112, 119–130.

    Google Scholar 

  • Berryman, A. (1987). The theory and classification of outbreaks. In P. Barbosa & J. C. Schultz (Eds.), Insect outbreaks (pp. 3–30). New York: Academic Press.

    Google Scholar 

  • Bialozyt, R., Ziegenhagen, B., & Petit, R. J. (2006). Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. Journal of Evolutionary Biology, 19, 12–20.

    CAS  PubMed  Google Scholar 

  • Blanford, S., & Thomas, M. B. (2000). Thermal behavior of two acridid species: Effects of habitat and season on body temperature and the potential impact on biocontrol with pathogens. Environmental Entomology, 29(5), 1060–1069.

    Google Scholar 

  • Bouhot-Delduc, L. (2005). Dynamique des populations de la processionnaire du pin et extension de son aire de colonisation de 1981 à 2004 en France. In Les Cahier du DSF 1–2005, La santé des forêts (France) en 2003 et 2004, Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales, Paris, 6 p.

    Google Scholar 

  • Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews, 80(2), 205–225.

    PubMed  Google Scholar 

  • Breuer, M., Devkota, B., Douma-Petridou, E., Koutsaftikis, A., & Schmidt, G. H. (1989). Studies on the exposition and temperature of nests of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) in Greece. Journal of Applied Entomology, 107, 370–375.

    Google Scholar 

  • Bromilow, S. M., & Sperling, F. A. H. (2011). Phylogeographic signal variation in mitochondrial DNA among geographically isolated grassland butterflies. Journal of Biogeography, 38(2), 299–310.

    Google Scholar 

  • Buffo, E., Battisti, A., Stastny, M., & Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 9, 65–72.

    Google Scholar 

  • Buggs, R. J. A. (2007). Empirical study of hybrid zone movement. Heredity, 99, 301–312.

    CAS  PubMed  Google Scholar 

  • Bull, M. C. (1991). Ecology of parapatric distributions. Annual Review of Ecology, Evolution and Systematics, 22, 19–36.

    Google Scholar 

  • Burban, C., Magnoux, E., Rousselet, J., & Kerdelhué, C. (2012). Development and characterization of 13 new microsatellite markers in the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Notodontidae). In Molecular Ecology Resources Primer Development Consortium et al. (Eds.), Permanent genetic resources added to Molecular Ecology Resources Database 1 August 2011–30 September 2011. Molecular Ecology Resources, 12(1), 185–189.

    Google Scholar 

  • Buxton, R. D. (1983). Forest management and the pine processionary moth. Outlook on Agriculture, 12, 34–39.

    Google Scholar 

  • Canestrelli, D., Cimmaruta, R., Costantini, V., & Nascetti, G. (2006). Genetic diversity and phylogeography of the Apennine yellow-bellied toad Bombina pachypus, with implications for conservation. Molecular Ecology, 15, 3741–3754.

    CAS  PubMed  Google Scholar 

  • Carrión, J. S., Navarro, C., Navarro, J., & Munuera, M. (2000). The distribution of cluster pine (Pinus pinaster) in Spain as derived from palaeoecological data: Relationships with phytosociological classification. The Holocene, 10, 243–252.

    Google Scholar 

  • Cassel-Lundhagen, A., Ronnås, C., Battisti, A., Wallén, J., & Larsson, S. (2013). Stepping-stone expansion and habitat loss explain a peculiar genetic structure and distribution of a forest insect. Molecular Ecology, 22(12), 3362–3375.

    CAS  PubMed  Google Scholar 

  • Cheddadi, R., Vendramin, G. G., Litt, T., François, L., Kageyama, M., Lorentz, S., Laurent, J.-M., de Beaulieu, J.-L., Sadori, L., Jost, A., & Lunt, D. (2006). Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography, 15(3), 271–282.

    Google Scholar 

  • Coope, G. R. (2004). Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1442), 209–214.

    CAS  Google Scholar 

  • Costa, J. T. (2006). The other insect societies. Cambridge, MA: Harvard University Press, 812 p.

    Google Scholar 

  • CTGREF-INRA. (1980). La chenille processionnaire du pin. Organisation de la surveillance en forêt à partir de 1980. CTGREF, Division de la Protection de la Nature, Saint Martin d’Hères & INRA, Station de Zoologie Forestière, Avignon, France, 40 p.

    Google Scholar 

  • Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: Massive introgression by local genes. Evolution, 62(8), 1908–1920.

    PubMed  Google Scholar 

  • De Freina, J., & Witt, T. J. (1982). Taxonomische Veränderungen bei den Bombyces und Sphinges Europas und Nordwestafrikas. Atalanta, 13, 309–317.

    Google Scholar 

  • De Freina, J., & Witt, T. J. (1987). Die Bombyces und Sphinges der Westpalaearktis (Insecta, Lepidoptera). Band 1. Forschung & Wissenschaft Verlag GmbH, München, 708 p.

    Google Scholar 

  • De-Lucas, A. I., González-Martínez, S. C., Vendramin, G. G., Hidalgo, E., & Heuertz, M. (2009). Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton. Molecular Ecology, 18, 4564–4576.

    CAS  PubMed  Google Scholar 

  • Démolin, G. (1969). Comportement des adultes de Thaumetopoea pityocampa Schiff. Dispersion spatiale, importance écologique. Annales des Sciences Forestières, 26, 89–102.

    Google Scholar 

  • Démolin, G. (1988). Intensification de la protection phytosanitaire des forêts. Algérie 1986–1987. La processionnaire du cèdre: Thaumetopoea bonjeani. FAO, Rapport scientifique et rapport iconographique, Roma, Italy, 21 p.

    Google Scholar 

  • Démolin, G., Frérot, B., Chambon, J. P., & Martin, E. (1994). Réflexion biosystématique sur toutes les processionnaires du genre Thaumetopoea (Lep. Thaumetopoeidae), considérées comme ravageurs importants des cèdres Cedrus libani Barel et Cedrus atlantica Manetti sur le pourtour du bassin méditerraneen. Annales des Recherches Forestières Maroc, 2, 577–591.

    Google Scholar 

  • Démolin, G., Abgrall, J. F., & Bouhot-Delduc, L. (1996). Evolution de l’aire de la processionnaire du pin en France. Les cahiers du DSF 1–1996, La santé des forêts en 1995. Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales, Paris, 26–28.

    Google Scholar 

  • Denlinger, D. L., & Yocum, G. D. (1998). Physiology of heat sensitivity. In G. J. Hallman & D. L. Denlinger (Eds.), Temperature sensitivity in insects and application in integrated pest management (pp. 7–53). Boulder: Westview Press.

    Google Scholar 

  • Denno, R. F., McClure, M. S., & Ott, J. R. (1995). Interspecific interactions in phytophagous insects: Competition reexamined and resurrected. Annual Review of Entomology, 40(1), 297–331.

    CAS  Google Scholar 

  • Dres, M., & Mallet, J. (2002). Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1420), 471–492.

    PubMed Central  PubMed  Google Scholar 

  • Dussourd, D. E. (1993). Foraging with finesse: Caterpillar adaptations for circumventing plant defenses. In N. E. Stamp & T. Casey (Eds.), Caterpillars: Ecological and evolutionary constraints on foraging (pp. 92–131). New York: Chapman & Hall.

    Google Scholar 

  • Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.

    Google Scholar 

  • El Yousfi, M. (1989). The cedar processionary moth, Thaumetopoea bonjeani (Powell). Boletin de Sanidad Vegetal, Plagas, 15, 43–56.

    Google Scholar 

  • Epperson, B. K. (2003). Geographical genetics. Princeton/Oxford: Princeton University Press, 376 p.

    Google Scholar 

  • Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review of Ecology, Evolution and Systematics, 40, 481–501.

    Google Scholar 

  • Fan, S. H., Elmer, K. R., & Meyer, A. (2012). Genomics of adaptation and speciation in cichlid fishes: Recent advances and analyses in African and neotropical lineages. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587), 385–394.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Google Scholar 

  • Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Associates, 580 p.

    Google Scholar 

  • Fitzgerald, T. D. (1993). Sociality in caterpillars. In N. E. Stamp & T. Casey (Eds.), Caterpillars: Ecological and evolutionary constraints on foraging (pp. 372–403). New York: Chapman & Hall.

    Google Scholar 

  • Fitzgerald, T. D., & Panades I Blas, X. (2003). Mid-winter foraging of colonies of the pine processionary caterpillars Thaumetopoea pityocampa Schiff. (Thaumetopoeidae). Journal of Lepidopterologists’ Society, 57, 161–167.

    Google Scholar 

  • Frérot, B., & Démolin, G. (1993). Sex pheromone of the processionary moths and biosystematic considerations within the genus Thaumetopoea (Thaumetopoeidae: Thaumetopoeinae). Bollettino di Zoologia Agraria e di Bachicoltura, 25, 33–40.

    Google Scholar 

  • Frérot, B., Malosse, C., Milat, M. L., Démolin, G., Martin, J. C., Khemici, M., Zamoun, M., & Gachi, M. (1990). Chemical analysis of the sex pheromone glands of Thaumetopoea bonjeani (Powell) (Lep., Thaumetopoeidae). Journal of Applied Entomology, 109(2), 210–212.

    Google Scholar 

  • Furth, D., & Halperin, J. (1979). Observations on the phenology and biogeography of Thaumetopoea jordana (Stgr.) (Lep. Thaumetopoeidae). Israel Journal of Entomology, 13, 1–11.

    Google Scholar 

  • Gärdenfors, U. (Ed.). (2000). The 2000 Red list of Swedish species. Uppsala: ArtDatabanken, SLU, 397 p.

    Google Scholar 

  • Gachi, M. (2004). Contribution à l’étude de l’éco-biologie de la processionnaire d’été Thaumetopoea bonjeani P. (Lep. Thaumetopoeidae) dans la cédraie du Bélezma Aurès, MagisterUSTHB, Alger, Algérie.

    Google Scholar 

  • Garnier, J. (2011). Accelerating solutions in integro-differential equations. SIAM Journal on Mathematical Analysis, 43, 1955–1974.

    Google Scholar 

  • Géri, C. (1980). Application des méthodes d’études démécologiques aux insectes défoliateurs forestiers. Cas de Diprion pini L. (Hyménoptère Diprionidae). Dynamique des populations de la processionnaire du pin Thaumetopoea pityocampa (Lépidoptère Thaumetopoeidae) dans l’île de Corse. Doctorat d’Etat, Université Paris Sud, Orsay, France, 289 p.

    Google Scholar 

  • Gómez, A., & Lunt, D. H. (2006). Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In S. Weiss & N. Ferrand (Eds.), Phylogeography of southern European refugia – Evolutionary perspectives on the origins and conservation of European biodiversity (pp. 155–158). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Groenen, F., & Meurisse, N. (2012). Historical distribution of the oak processionary moth Thaumetopoea processionea in Europe suggests recolonization instead of expansion. Agricultural and Forest Entomology, 14, 147–155.

    Google Scholar 

  • Habel, J. C., & Assmann, T. (Eds.). (2010). Relict species – phylogeography and conservation biology. Heidelberg: Springer, 449 p.

    Google Scholar 

  • Haldane, J. B. S. (1922). Sex-ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101–109.

    Google Scholar 

  • Hellrigl, K. (1995). Der Kiefernprozessionspinner (Thaumetopoea pityocampa Denis & Schiff.) in Südtirol. Schriftenreihe für Wissenschaftliche Studien, Landesabteilung Forstwirtschaft der Autonome Provinz Bozen/Südtirol, Bolzano/Bozen, Italy, 1, 1–80.

    Google Scholar 

  • Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276.

    Google Scholar 

  • Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68(1–2), 87–112.

    Google Scholar 

  • Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.

    CAS  PubMed  Google Scholar 

  • Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1442), 183–195.

    CAS  Google Scholar 

  • Hoch, G., Toffolo, E. P., Netherer, S., Battisti, A., & Schopf, A. (2009). Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology, 11, 313–320.

    Google Scholar 

  • Hódar, J. A., Zamora, R., & Castro, J. (2002). Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecological Entomology, 27, 292–301.

    Google Scholar 

  • Hódar, J. A., Castro, J., & Zamora, R. (2003). Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation, 110, 123–129.

    Google Scholar 

  • Horn, A., Stauffer, C., Lieutier, F., & Kerdelhué, C. (2009). Complex postglacial history of the temperate bark beetle Tomicus piniperda L. (Coleoptera, Scolytinae). Heredity, 103(3), 238–247.

    CAS  PubMed  Google Scholar 

  • Huchon, H., & Démolin, G. (1970). La bioécologie de la processionnaire du pin. Dispersion potentielle – Dispersion actuelle. Revue Forestière Française, 22, 220–234.

    Google Scholar 

  • Hultén, E., & Fries, M. (1986). Atlas of North European vascular plants, North of the Tropic of Cancer I-III. Königstein: Koeltz Scientific Books, 1172 p.

    Google Scholar 

  • Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282–291.

    Google Scholar 

  • İpekdal, K. (2012). Delimitation and phylogeography of the pine processionary moth species, Thaumetopoea pityocampa and T. wilkinsoni. Ph.D. dissertation, Hacettepe University, Institute of Science, Ankara, Turkey, 194 p. [in Turkish].

    Google Scholar 

  • Jones, J. C., & Oldroyd, B. P. (2006). Nest thermoregulation in social insects. Advances in Insect Physiology, 33, 153–191.

    Google Scholar 

  • Kerdelhué, C., Magnoux, E., Lieutier, F., Roques, A., & Rousselet, J. (2006). Comparative population genetic study of two oligophagous insects associated with the same hosts. Heredity, 97, 38–45.

    PubMed  Google Scholar 

  • Kerdelhué, C., Zane, L., Simonato, M., Salvato, P., Rousselet, J., Roques, A., & Battisti, A. (2009). Quaternary history and contemporary patterns in a currently expanding species. BMC Evolutionary Biology, 9, 220.

    PubMed Central  PubMed  Google Scholar 

  • Kiriakoff, S. G. (1970). Lepidoptera Familia Thaumetopoeidae. In P. Wytsman (Ed.), Genera insectorum (pp. 1–54). Anvers: SPRL Mercurius.

    Google Scholar 

  • Klein, E. K., Lavigne, C., & Gouyon, P.-H. (2006). Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecology, 6, 3.

    PubMed Central  PubMed  Google Scholar 

  • Klomp, H. (1966). The dynamics of a field population of the pine looper, Bupalus piniaria L. (Lep. Geom.). Advances in Ecological Research, 3, 207–305.

    Google Scholar 

  • Kolmogorov, A. N., Petrovskii, I. G., & Piskunov, N. S. (1937). A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Bulletin of Moscow University, Mathematics Series A, 1, 1–25.

    Google Scholar 

  • Kornfield, I., & Smith, P. F. (2000). African cichlid fishes: model systems for evolutionary biology. Annual Review of Ecology and Systematics, 31, 163–196.

    Google Scholar 

  • Kot, M., Lewis, M., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042.

    Google Scholar 

  • Kramer, P. J., & Kozlowski, T. T. (1979). Physiology of woody plants. New York: Academic Press, 811 p.

    Google Scholar 

  • Kullman, L. (2002). Boreal tree taxa in the central Scandes during the Late-Glacial: Implications for Late-Quaternary forest history. Journal of Biogeography, 29(9), 1117–1124.

    Google Scholar 

  • Kullman, L. (2008). Early postglacial appearance of tree species in northern Scandinavia: Review and perspective. Quaternary Science Reviews, 27(27–28), 2467–2472.

    Google Scholar 

  • Larsen, E., Gulliksen, S., Lauritzen, S.-E., Lie, R., Løvlie, R., & Mangerud, J. A. N. (1987). Cave stratigraphy in western Norway; multiple Weichselian glaciations and interstadial vertebrate fauna. Boreas, 16(3), 267–292.

    Google Scholar 

  • Larsson, S., Aimi, A., Ronnås, C., & Battisti, A. (2008). A local outbreak of the northern pine processionary moth Thaumetopoea pinivora on Gotland, south Sweden. Proceedings of a IUFRO(WP 7.03.10) symposium held in Gmunden, Austria, pp. 219–224.

    Google Scholar 

  • Loiselle, B. A., Sork, V. L., Nason, J., & Graham, C. (1995). Spatial genetic structure of tropical understorey shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 82, 1420–1425.

    Google Scholar 

  • Lopez-Vaamonde, C., Godfray, H. C., & Cook, J. M. (2003). Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution, 57, 1804–1821.

    PubMed  Google Scholar 

  • Maddison, D. R., & Maddison, W. P. (2005). MacClade 4: analysis of phylogeny and character evolution, Version 4.08a. http://macclade.org

  • Mahadav, A., Kontsedalov, S., Czosnek, H., & Ghanim, M. (2009). Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochemistry and Molecular Biology, 39, 668–676.

    CAS  PubMed  Google Scholar 

  • Masutti, L., & Battisti, A. (1990). Thaumetopoea pityocampa (Den. & Schiff.) in Italy. Bionomics and perspectives of integrated control. Journal of Applied Entomology, 110, 229–234.

    Google Scholar 

  • McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution, 66(2), 526–538.

    CAS  PubMed  Google Scholar 

  • Milani, N. (1990). The temperature of the egg masses of Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera, Thaumetopoeidae). Redia, 73, 149–161.

    Google Scholar 

  • Mitter, C., Farrell, B., & Wiegmann, B. (1988). The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? The American Naturalist, 132, 107–128.

    Google Scholar 

  • Montoya, R. (1981). La procesionaria del pino. Plagas de Insectos en las Masas Forestales Españolas. Madrid: Ministerio de Agricultura, Pesca y Alimentación.

    Google Scholar 

  • Nair, K. S. S. (1988). The teak defoliator in Kerala, India. In A. A. Berryman (Ed.), Dynamics of forest insect populations, patterns, causes, implications (pp. 268–288). New York: Plenum Press.

    Google Scholar 

  • Naydenov, K., Senneville, S., Beaulieu, J., Tremblay, F., & Bousquet, J. (2007). Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evolutionary Biology, 7(1), 233.

    PubMed Central  PubMed  Google Scholar 

  • Ortego, J., Yannic, G., Shafer, A., Mainguy, J., Festa-Bianchet, M., Coltman, D., & Côté, S. (2011). Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Molecular Ecology, 20, 1601–1611.

    PubMed  Google Scholar 

  • Paiva, M. R., Mateus, E., Santos, M. H., & Branco, M. R. (2011a). Pine volatiles mediate host selection for oviposition by Thaumetopoea pityocampa (Lep., Notodontidae). Journal of Applied Entomology, 135, 195–203.

    CAS  Google Scholar 

  • Paiva, M.-R., Santos, H., Kerdelhué, C., Mateus, E. P., & Branco, M. (2011b). Can climate change drive speciation? Proceedings of the global conference on global warming, Lisbon, Portugal, pp. 779–783.

    Google Scholar 

  • Pérez-Contreras, T., Soler, J. J., & Soler, M. (2003). Why do pine processionary caterpillars Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae) live in large groups? An experimental study. Annales Zoologici Fennici, 40(6), 505–515.

    Google Scholar 

  • Petit, R. J., & Excoffier, L. (2009). Gene flow and species delimitation. Trends in Ecology and Evolution, 24(7), 386–393.

    PubMed  Google Scholar 

  • Petit, R. J., Aguinagalde, I., de Beaulieu, J. L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Fineschi, S., Grivet, D., Lascoux, M., Mohanty, A., Muller-Starck, G. M., Demesure-Musch, B., Palme, A., Martin, J. P., Rendell, S., & Vendramin, G. G. (2003). Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300(5625), 1563–1565.

    CAS  PubMed  Google Scholar 

  • Pimentel, C., Calvão, T., Santos, M., Ferreira, C., Neves, M., & Nilsson, J.-A. (2006). Establishment and expansion of a Thaumetopoea pityocampa (Den. & Schiff.) (Lep. Notodontidae) population with a shifted life cycle in a production pine forest, Central-Coastal Portugal. Forest Ecology and Management, 233, 108–115.

    Google Scholar 

  • Pimentel, C., Ferreira, C., & Nilsson, J.-Å. (2010). Latitudinal gradients and the shaping of life-history traits in a gregarious caterpillar. Biological Journal of the Linnean Society, 100(1), 224–236.

    Google Scholar 

  • Pimentel, C., Santos, M., Ferreira, C., & Nilsson, J.-Å. (2012). Temperature, size, reproductive allocation, and life-history evolution in a gregarious caterpillar. Biological Journal of the Linnean Society, 105, 340–349.

    Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnely, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao, C. Y., Ran, J. H., Li, Y., & Wang, X. Q. (2007). Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Annals of Botany, 100(3), 573–580.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinet, C. (2006). Modélisation mathématique des phénomènes d’invasion en écologie, exemple de la chenille processionnaire du pin. Thèse de doctorat, spécialité Mathématiques et Applications aux Sciences de l’Homme, Ecole des Hautes Études en Sciences Sociales (E.H.E.S.S.), Paris, France, 208 p.

    Google Scholar 

  • Robinet, C., Baier, P., Pennerstorfer, J., Schopf, A., & Roques, A. (2007). Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Global Ecology and Biogeography, 16, 460–471.

    Google Scholar 

  • Robinet, C., Rousselet, J., Imbert, C.-E., Sauvard, D., Garcia, J., Goussard, F., & Roques, A. (2010). Le réchauffement climatique et le transport accidentel par l’homme responsables de l’expansion de la chenille processionnaire du pin. Forêt Wallonne, 108, 19–27.

    Google Scholar 

  • Robinet, C., Imbert, C.-E., Rousselet, J., Sauvard, D., Garcia, J., Goussard, F., & Roques, A. (2012). Human-mediated long-distance jumps of the pine processionary moth in Europe. Biological Invasions, 14, 1557–1569.

    Google Scholar 

  • Robinet, C., Rousselet, J., & Roques, A. (2014). Potential spread of the pine processionary moth in France, preliminary results from a simulation model and future challenges. Annals of Forest Science, 71, 149–160.

    Google Scholar 

  • Ronnås, C., Larsson, S., Pitacco, A., & Battisti, A. (2010). Effects of colony size on larval performance in a processionary moth. Ecological Entomology, 35, 436–445.

    Google Scholar 

  • Ronnås, C., Cassel-Lundhagen, A., Battisti, A., Wallén, J., & Larsson, S. (2011). Limited emigration from an outbreak of a forest pest insect. Molecular Ecology, 20, 4606–4617.

    PubMed  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    CAS  PubMed  Google Scholar 

  • Rossi, J.-P., Garcia, J., & Rousselet, J. (2013). Prendre en compte les arbres ornementaux pour mieux comprendre la perméabilité des paysages à la dispersion de ravageurs – le cas des arbres hors forêt et de la chenbille processionnaire du pin. In Proceedings 3 ème Conférence sur l’Entretien des Zones Non-Agricoles, ENSAT Toulouse, France (pp. 469–476).

    Google Scholar 

  • Rousselet, J., Magnoux, E., & Kerdelhué, C. (2004). Characterization of five microsatellite loci in the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera Notodontidae Thaumetopoeinae). Molecular Ecology Notes, 4, 213–214.

    CAS  Google Scholar 

  • Rousselet, J., Zhao, R., Argal, D., Simonato, M., Battisti, A., Roques, A., & Kerdelhué, C. (2010). The role of topography in structuring the demographic history of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera, Notodontidae). Journal of Biogeography, 37, 1478–1490.

    Google Scholar 

  • Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8, 336–352.

    Google Scholar 

  • Salvador, L., Alía, R., Agúndez, D., & Gil, L. (2000). Genetic variation and migration pathways of maritime pine (Pinus pinaster Ait.) in the Iberian peninsula. Theoretical and Applied Genetics, 100, 89–95.

    Google Scholar 

  • Salvato, P., Battisti, A., Concato, S., Masutti, L., Patarnello, T., & Zane, L. (2002). Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Molecular Ecology, 11, 2435–2444.

    CAS  PubMed  Google Scholar 

  • Salvato, P., Simonato, M., Patarnello, T., Masutti, L., & Battisti, A. (2005). Do sexual pheromone traps provide biased information of the local gene pool in the pine processionary moth? Agricultural and Forest Entomology, 7, 127–132.

    Google Scholar 

  • Santos, H., Rousselet, J., Magnoux, E., Paiva, M. R., Branco, M., & Kerdelhué, C. (2007). Genetic isolation through time: allochronic differentiation of a phenologically atypical population of the pine processionary moth. Proceedings of the Royal Society of London Series B, 274, 935–941.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos, H., Paiva, M. R., Tavares, C., Kerdelhué, C., & Branco, M. (2011a). Temperature niche shift observed in a Lepidoptera population under allochronic divergence. Journal of Evolutionary Biology, 24(9), 1897–1905.

    CAS  PubMed  Google Scholar 

  • Santos, H., Burban, C., Rousselet, J., Rossi, J.-P., Branco, M., & Kerdelhué, C. (2011b). Incipient allochronic speciation in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera, Notodontidae). Journal of Evolutionary Biology, 24(1), 146–158.

    CAS  PubMed  Google Scholar 

  • Santos, H., Paiva, M. R., Rocha, S., Kerdelhué, C., & Branco, M. (2013). Phenotypic divergence in reproductive traits of a moth population experiencing a phenological shift. Ecology and Evolution, 3(15), 5098–5108.

    PubMed Central  PubMed  Google Scholar 

  • Schilthuizen, M., Giesbers, M. C. W. G., & Beukeboom, L. W. (2011). Haldane’s rule in the 21st century. Heredity, 107, 95–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt, G. H., Mirchev, P., & Tsankov, G. (1997). The egg parasitoids of Thaumetopoea pityocampa in the Atlas Mountains near Marrakech (Morocco). Phytoparasitica, 25(4), 275–281.

    Google Scholar 

  • Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4(1), 11.

    PubMed Central  PubMed  Google Scholar 

  • Schmitt, T., Muster, C., & Schönswetter, P. (2010). Are disjunct alpine and arctic-alpine animal and plant species in the western Palearctic really “relics of the cold past”? In J. Habel & T. Assmann (Eds.), Relict species – phylogeography and conservation biology (pp. 239–252). Heidelberg: Springer.

    Google Scholar 

  • Schroeder, L. M., Ranius, T., Ekbom, B., & Larsson, S. (2007). Spatial occurrence of a habitat-tracking saproxylic beetle inhabiting a managed forest landscape. Ecological Applications, 17(3), 900–909.

    PubMed  Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.

    CAS  Google Scholar 

  • Simonato, M., Mendel, Z., Kerdelhué, C., Rousselet, J., Magnoux, E., Salvato, P., Roques, A., Battisti, A., & Zane, L. (2007). Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East. Molecular Ecology, 16, 2273–2283.

    CAS  PubMed  Google Scholar 

  • Simonato, M., Battisti, A., Kerdelhué, C., Burban, C., Lopez-Vaamonde, C., Pivotto, I., Salvato, P., & Negrisolo, N. (2013). Host and phenology shifts in the evolution of the social moth genus Thaumetopoea. PloS ONE, 8(2), e57192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair, W. T., Morman, J. D., & Ennos, R. A. (1999). The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: Evidence from mitochondrial DNA variation. Molecular Ecology, 8(1), 83–88.

    Google Scholar 

  • Singer, M. S., & Stireman, J. O. (2003). Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar? Oikos, 100, 554–562.

    Google Scholar 

  • Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics, 16, 393–430.

    Google Scholar 

  • Stastny, M., Battisti, A., Petrucco, T. E., Schlyter, F., & Larsson, S. (2006). Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological Entomology, 31, 481–490.

    Google Scholar 

  • Stewart, J. R., & Lister, A. M. (2001). Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16(11), 608–613.

    Google Scholar 

  • Strong, D. R., Lawton, J. H., & Southwood, T. R. E. (1984). Insects on plants: community patterns and mechanisms. Oxford: Blackwell Scientific, 331 p.

    Google Scholar 

  • Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G., & Cosson, J.-F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 20(10), 2731–2739.

    Google Scholar 

  • Thuillier, W., Richardson, D. M., Pyšek, P., Midgley, G. F., Hughes, G. O., & Rouget, M. (2005). Niche based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234–2250.

    Google Scholar 

  • Travis, J. M. J., Mustin, K., Benton, T. G., & Dytham, C. (2009). Accelerating invasion rates result from the evolution of density-dependent dispersal. Journal of Theoretical Biology, 259(1), 151–158.

    PubMed  Google Scholar 

  • Trougth, T. (1954). The life history of Thaumetopoea jordana Staudinger. Entomologist’s Record, 66, 188–191.

    Google Scholar 

  • Turelli, M., Hoffmann, A. A., & McKechnie, S. W. (1992). Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 132(3), 713–723.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Twyford, A. D., & Ennos, R. A. (2012). Next-generation hybridization and introgression. Heredity, 108(3), 179–189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vekemans, X., & Hardy, O. J. (2004). New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology, 13, 931–935.

    Google Scholar 

  • Vrijenhoek, R. C. (1994). Genetic diversity and fitness in small populations. In V. Loeschcke & S. Jain (Eds.), Conservation genetics (pp. 37–53). Basel: Birkhauser.

    Google Scholar 

  • Weinberger, H. F. (1982). Long-time behavior of a class of biological models. SIAM Journal on Mathematical Analysis, 13(3), 353–396.

    Google Scholar 

  • Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Werren, J. H. (1997). Biology of Wolbachia. Annual Review of Entomology, 42, 587–609.

    CAS  PubMed  Google Scholar 

  • Whitlock, M. C., Griswold, C. K., & Peters, A. D. (2003). The critical effective size of a population with deleterious and compensatory mutations. Annales Zoologici Fennici, 40, 169–183.

    Google Scholar 

  • Wilson, R., Davies, Z., & Thomas, C. D. (2010). Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach. Ecography, 33, 73–82.

    Google Scholar 

  • Wiltshire, E. P. (1980). The larger moths of Dhofar and their zoogeographic composition. Journal of Oman Studies Special Report, 2, 187–216.

    Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114–138.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323–354.

    CAS  PubMed  Google Scholar 

  • Zovi, D., Stastny, M., Battisti, A., & Larsson, S. (2008). Ecological costs on local adaptation of an insect herbivore imposed by host plants and enemies. Ecology, 89(5), 1388–1398.

    PubMed  Google Scholar 

  • Zuo, W., Moses, M. E., West, G. B., Hou, C., & Brown, J. H. (2012). A general model for effects of temperature on ectotherm ontogenetic growth and development. Proceedings of the Royal Society of London Series B, 279, 1840–1846.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carole Kerdelhué , Mauro Simonato , Carole Kerdelhué , Jérôme Rousselet , Anna Cassel-Lundhagen or Manuela Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Éditions Quæ

About this chapter

Cite this chapter

Kerdelhué, C. et al. (2015). Genetic Diversity and Structure at Different Spatial Scales in the Processionary Moths. In: Roques, A. (eds) Processionary Moths and Climate Change : An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9340-7_4

Download citation