Abstract
Tumor ablation is defined as the direct application of chemical or thermal therapies to a tumor to achieve eradication or substantial tumor destruction. Currently, minimally invasive ablation techniques have become available for local destruction of focal tumors in multiple organ sites. Microwave ablation is based on biological response to tissue hyperthermia for solid tumor treatment with relatively low-risk procedure. Because of several advantages including higher thermal efficiency, higher capability of coagulating blood vessels, faster ablation time, and simultaneous application of multiple antennas, microwave ablation could be a promising minimally invasive ablation technique for the treatment of solid tumors. The aim of this chapter is to review the basic principles and the state of the art of different device technologies, approaches, treatment strategies, current therapeutic status, and future trends of microwave ablation for solid tumors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- CT:
-
Computed tomography
- MRI:
-
Magnetic resonance imaging
- MWA:
-
Microwave ablation
- RFA:
-
Radiofrequency ablation
- TACE:
-
Transcatheter arterial chemoembolization
- US:
-
Ultrasound
References
Halsted WS. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June 1889 to January 1894. Johns Hopkins Hosp Rep 1894–1895;4:297–350.
Liang P, Yu J, Yu XL, Wang X, Wei Q, Yu S. Percutaneous cooled-tip microwave ablation under ultrasound guidance for primary liver cancer: a multicentre analysis of 1363 treatment-naive lesions in 1007 patients in China. Gut. 2011;61(7):1100–1.
Francica G, Saviano A, De Sio I, De Matthaeis N, Brunello F, Cantamessa A, Giorgio A, Scognamiglio U, Fornari F, Giangregorio F, Piscaglia F, Gualandi S, Caturelli E, Roselli P, Rapaccini GL, Pompili M. Long-term effectiveness of radiofrequency ablation for solitary small hepatocellular carcinoma: a retrospective analysis of 363 patients. Dig Liver Dis. 2013;45(4):336–41.
Chang XJ, Lu YY, Bai WL, Chen Y, An LJ, Zhou L, Wang H, Wu Y, Liu Z, Lou M, Zeng Z, Su SH, Yang YP. Clinical efficacy and prognostic factors for cryoablation patients with advanced hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2011;19(10):759–63.
Yu J, Liang P, Yu XL, Cheng ZG, Han ZY, Mu MJ, Wang XH. US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology. 2012;263(3):900–8.
Popovic P, Lukic S, Mijailovic M, Salapura V, Garbajs M, Surlan PK. Percutaneous radiofrequency ablation of small renal cell carcinoma: technique, complications, and outcomes. J BUON. 2012;17(4):621–6.
Tanagho YS, Roytman TM, Bhayani SB, Kim EH, Benway BM, Gardner MW, Figenshau RS. Laparoscopic cryoablation of renal masses: single-center long-term experience. Urology. 2012;80(2):307–14.
Yang Wang, Ping Liang, Xiaoling Yu, Zhigang Cheng, Jie Yu, Jun Dong. Ultrasound-guided percutaneous microwave ablation of adrenal metastasis: preliminary results. Int J Hyperthermia 2009;25(6):455–61.
Del Pizzo JJ. Radiofrequency ablation for adrenal lesions. Curr Urol Rep. 2006;7(1):68.
Atwell TD, Wass CT, Charboneau JW, Callstrom MR, Farrell MA, Sengupta S. Malignant hypertension during cryoablation of an adrenal gland tumor. J Vasc Interv Radiol. 2006;17(3):573–5.
Carrafiello G, Mangini M, Fontana F, Laganà D, Cotta E, Di Massa A, Piacentino F, Ianniello A, Floridi C, Ierardi AM, Fugazzola C. Radiofrequency ablation for single lung tumours not suitable for surgery: seven years’ experience. Radiol Med. 2012;117(8):1320–32.
Inoue M, Nakatsuka S, Yashiro H, Ito N, Izumi Y, Yamauchi Y, Hashimoto K, Asakura K, Tsukada N, Kawamura M, Nomori H, Kuribayashi S. Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol. 2012;23(3):295–302; quiz 305.
Dent TH. Microwave ablation therapy of pulmonary metastases. Radiology. 2013;266(3):995–6.
Palussière J, Pellerin-Guignard A, Descat E, Cornélis F, Dixmérias F. Radiofrequency ablation of bone tumours. Diagn Interv Imaging. 2012;93(9):660–4.
Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, Paz-Fumagalli R, Hoffman C, Atwell TD, Charboneau JW, Schmit GD, Goetz MP, Rubin J, Brown KJ, Novotny PJ, Sloan JA. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41.
Na DG, Lee JH, Jung SL, Kim JH, Sung JY, Shin JH, Kim EK, Lee JH, Kim DW, Park JS, Kim KS, Baek SM, Lee Y, Chong S, Sim JS, Huh JY, Bae JI, Kim KT, Han SY, Bae MY, Kim YS, Baek JH. Korean Society of Thyroid Radiology (KSThR); Korean Society of Radiology. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol. 2012;13(2):117–25.
Feng B, Liang P, Cheng Z, Yu X, Yu J, Han Z, Liu F. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol. 2012;166(6):1031–7.
Liu Q, Song Y, Zhou N, Xu X, Wang Z. Radiofrequency ablation of splenic tumors: a case series. J Gastroenterol Liver Dis. 2013;22(1):105–8.
Jie Y, Liang P, Xiaoling Y, Wang Y, Gao Y. Ultrasound-guided percutaneous microwave ablation of splenic metastasis: report of four cases and literature review. Int J Hyperthermia. 2011;27(5):517–22.
Simon CJ, Dupuy DE. Image-guided ablative techniques in pelvic malignancies: radiofrequency ablation, cryoablation, microwave ablation. Surg Oncol Clin N Am. 2005;14(2):419–31.
Qi C, Yu XL, Liang P, Cheng ZG, Liu FY, Han ZY, Yu J. Ultrasound-guided microwave ablation for abdominal wall metastatic tumors: a preliminary study. World J Gastroenterol. 2012;18(23):3008–14.
Tabuse K, Katsumi M, Kobayashi Y, et al. Microwave surgery: hepatectomy using a microwave tissue coagulator. World J Surg. 1985;9:136–43.
English NJ, Mac Elroy JM. Molecular dynamics simulations of microwave heating of water. J Chem Phys. 2003;118:1589–92.
Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia. 2005;21:745–53.
Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancies: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol. 2000;174:323–31.
Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthemia. 2003;3:267–94.
Yu J, Liang P, Yu X, Liu F, Chen L, Wang Y. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Eur J Radiol. 2011;79(1):124–30.
Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol. 2009;38:135–43.
Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25 Suppl 1:S69–83.
Li X, Zhang L, Fan W, Zhao M, Wang L, Tang T, Jiang H, Zhang J, Liu Y. Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: results in ex vivo porcine livers. Int J Hyperthemia. 2011;27(3):240–8.
Fan W, Li X, Zhang L, Jiang H, Zhang J. Comparison of microwave ablation and multipolar radiofrequency ablation in vivo using two internally cooled probes. AJR Am J Roentgenol. 2012;198(1):W46–50.
Wright AS, Sampson LA, Warner TF. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236:132–9.
Brannan JD, Ladtkow CM. Modeling bimodal vessel effects on radio and microwave frequency ablation zones. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5989–92.
Mertyna P, Goldberg W, Yang W, Goldberg SN. Thermal ablation a comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model. Acad Radiol. 2009;16(12):1539–48.
Bhardwaj N, Strickland AD, Ahmad F, Atanesyan L, West K, Lloyd DM. A comparative histological evaluation of the ablations produced by microwave, cryotherapy and radiofrequency in the liver. Pathology. 2009;41(2):168–72.
Shi W, Liang P, Zhu Q, Yu X, Shao Q, Lu T, Wang Y, Dong B. Microwave ablation: results with double 915 MHz antennas in ex vivo bovine livers. Eur J Radiol. 2011;79(2):214–7.
Liang P, Yu J, Lu MD, Dong BW, Yu XL, Zhou XD, Hu B, Xie MX, Cheng W, He W, Jia JW, Lu GR. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J Gastroenterol. 2013;19(33):5430–8.
Bertram JM, Yang D, Converse MC, Webster JG, Mahvi D. A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng. 2006;34(3):187–213.
Longo I, Gentili GB, Cerretelli M, Tosoratti N. A coaxial antenna with miniaturized choke for minimally invasive interstitial heating. IEEE Trans Biomed Eng. 2003;50:82–8.
Schaller G, Erb J, Engelbrecht R. Field simulation of dipole antennas for interstitial microwave hyperthermia. IEEE Trans Microwave Theory Tech. 1996;44:887–95.
Hoffmann R, Rempp H, Erhard L, Blumenstock G, Pereira PL, Claussen CD, Clasen S. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology. 2013;268(1):89–97.
Kuang M, Lu MD, Xie XY, Xu HX, Mo LQ, Liu GJ, Xu ZF, Zheng YL, Liang JY. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna — experimental and clinical studies. Radiology. 2007;242:914–24.
Sun Y, Wang Y, Ni X, Gao Y, Shao Q, Liu L, Liang P. Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: results in in vivo porcine livers. Am J Roentgenol. 2009;192(2):511–4.
Wright AS, Lee Jr FT, Mahvi DM. Hepatic microwave ablation with multiple antennas results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol. 2003;10:275–83.
Shock SA, Meredith K, Warner TF, Sampson LA, Wright AS, Winter TC, Mahvi DM, Fine JP, Lee Jr FT. Microwave ablation with loop antenna: in vivo porcine liver model. Radiology. 2004;231:143–9.
Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee Jr FT. Microwave ablation with a single small-gauge triaxial antenna: in vivo porcine liver model. Radiology. 2007;242:435–40.
Pereira PL, Trübenbach J, Schenk M, Subke J, Kroeber S, Schaefer I, Remy CT, Schmidt D, Brieger J, Claussen CD. Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology. 2004;232(2):482–90.
Lu MD, Yu XL, Li AH, Jiang TA, Chen MH, Zhao BZ, Zhou XD, Wang JR. Comparison of contrast enhanced ultrasound and contrast enhanced CT or MRI in monitoring percutaneous thermal ablation procedure in patients with hepatocellular carcinoma: a multi-center study in China. Ultrasound Med Biol. 2007;33((11):1736–49.
Liu FY, Yu XL, Liang P, Wang Y, Zhou P, Yu J. Comparison of percutaneous 915 MHz microwave ablation and 2450 MHz microwave ablation in large hepatocellular carcinoma. Int J Hyperthermia. 2010;26(5):448–55.
Yin XY, Xie XY, Lu MD, Xu HX, Xu ZF, Kuang M, Liu GJ, Liang JY, Lau WY. Percutaneous thermal ablation of medium and large hepatocellular carcinoma:long-term outcome and prognostic factors. Cancer. 2009;115(9):1914–23.
Kanaoka Y, Hirai K, Ishiko O. Successful microwave endometrial ablation in a uterus enlarged by adenomyosis. Osaka City Med J. 2004;50(1):47–51.
Takamura M, Murakami T, Shibata T, Ishida T, Niinobu T, Kawata S, Shimizu J, Kim T, Monden M, Nakamura H. Microwave coagulation therapy with interruption of hepatic blood in- or outflow: an experimental study. JVIR. 2001;12:619–22.
Shibata T, Murakami T, Ogata N. Percutaneous microwave coagulation therapy for patients with primary and metastatic hepatic tumors during interruption of hepatic blood flow. Cancer. 2000;88:301–11.
Liu C, Liang P, Liu F, Wang Y, Li X, Han Z, Liu C. MWA combined with TACE as a combined therapy for unresectable large-sized hepatocellular carcinoma. Int J Hyperthermia. 2011;27(7):654–62.
Zhou P, Liu X, Li R, Nie W. Percutaneous coagulation therapy of hepatocellular carcinoma by combining microwave coagulation therapy and ethanol injection. Eur J Radiol. 2009;71(2):338–42.
Shimada S, Hirota M, Beppu T, Shiomori K, Marutsuka T, Matsuo A, Tanaka E, Ogawa M. A new procedure of percutaneous microwave coagulation therapy under artificial hydrothorax for patients with liver tumors in the hepatic dome. Surg Today. 2001;31(1):40–4.
Park SY, Tak WY, Jeon SW, Cho CM, Kweon YO, Kim SK, Choi YH. The efficacy of intraperitoneal saline infusion for percutaneous radiofrequency ablation for hepatocellular carcinoma. Eur J Radiol. 2010;74(3):536–40.
Raman SS, Aziz D, Chang X, Ye M, Sayre J, Lassman C, Lu DS. Minimizing central bile duct injury during radiofrequency ablation: use of intraductal chilled saline perfusion–initial observations from a study in pigs. Radiology. 2004;232(1):154–9.
Liu FY, Yu XL, Liang P, Cheng ZG, Han ZY, Dong BW, Zhang XH. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol. 2012;81(7):1455–9.
Seki T, Wakabayashi M, Nakagawa T, Imamura M, Tamai T, Nishimura A, Yamashiki N, Okamura A, Inoue K. Percutaneous microwave coagulation therapy for patients with small hepatocellular carinoma: comparison with percutaneous ethanol injection therapy. Cancer. 1999;85:1694–702.
Shibata T, Iimuro Y, Yamamoto Y, Maetani Y, Ametani F, Itoh K, Konishi J. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology. 2002;223:331–7.
Wang ZL, Liang P, Dong BW, Yu XL, de Yu J. Prognostic factors and recurrence of small hepatocellular carcinoma after hepatic resection or microwave ablation: a retrospective study. J Gastrointest Surg. 2008;12(2):327–37.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Dong, B., Yu, J., Liang, P. (2015). Microwave Ablation: Principles and Techniques. In: Liang, P., Yu, Xl., Yu, J. (eds) Microwave Ablation Treatment of Solid Tumors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9315-5_1
Download citation
DOI: https://doi.org/10.1007/978-94-017-9315-5_1
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-017-9314-8
Online ISBN: 978-94-017-9315-5
eBook Packages: MedicineMedicine (R0)