Skip to main content

Microwave Ablation: Principles and Techniques

  • Chapter
  • First Online:
Microwave Ablation Treatment of Solid Tumors

Abstract

Tumor ablation is defined as the direct application of chemical or thermal therapies to a tumor to achieve eradication or substantial tumor destruction. Currently, minimally invasive ablation techniques have become available for local destruction of focal tumors in multiple organ sites. Microwave ablation is based on biological response to tissue hyperthermia for solid tumor treatment with relatively low-risk procedure. Because of several advantages including higher thermal efficiency, higher capability of coagulating blood vessels, faster ablation time, and simultaneous application of multiple antennas, microwave ablation could be a promising minimally invasive ablation technique for the treatment of solid tumors. The aim of this chapter is to review the basic principles and the state of the art of different device technologies, approaches, treatment strategies, current therapeutic status, and future trends of microwave ablation for solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

MRI:

Magnetic resonance imaging

MWA:

Microwave ablation

RFA:

Radiofrequency ablation

TACE:

Transcatheter arterial chemoembolization

US:

Ultrasound

References

  1. Halsted WS. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June 1889 to January 1894. Johns Hopkins Hosp Rep 1894–1895;4:297–350.

    Google Scholar 

  2. Liang P, Yu J, Yu XL, Wang X, Wei Q, Yu S. Percutaneous cooled-tip microwave ablation under ultrasound guidance for primary liver cancer: a multicentre analysis of 1363 treatment-naive lesions in 1007 patients in China. Gut. 2011;61(7):1100–1.

    Article  PubMed  Google Scholar 

  3. Francica G, Saviano A, De Sio I, De Matthaeis N, Brunello F, Cantamessa A, Giorgio A, Scognamiglio U, Fornari F, Giangregorio F, Piscaglia F, Gualandi S, Caturelli E, Roselli P, Rapaccini GL, Pompili M. Long-term effectiveness of radiofrequency ablation for solitary small hepatocellular carcinoma: a retrospective analysis of 363 patients. Dig Liver Dis. 2013;45(4):336–41.

    Article  PubMed  Google Scholar 

  4. Chang XJ, Lu YY, Bai WL, Chen Y, An LJ, Zhou L, Wang H, Wu Y, Liu Z, Lou M, Zeng Z, Su SH, Yang YP. Clinical efficacy and prognostic factors for cryoablation patients with advanced hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2011;19(10):759–63.

    PubMed  Google Scholar 

  5. Yu J, Liang P, Yu XL, Cheng ZG, Han ZY, Mu MJ, Wang XH. US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology. 2012;263(3):900–8.

    Article  PubMed  Google Scholar 

  6. Popovic P, Lukic S, Mijailovic M, Salapura V, Garbajs M, Surlan PK. Percutaneous radiofrequency ablation of small renal cell carcinoma: technique, complications, and outcomes. J BUON. 2012;17(4):621–6.

    PubMed  CAS  Google Scholar 

  7. Tanagho YS, Roytman TM, Bhayani SB, Kim EH, Benway BM, Gardner MW, Figenshau RS. Laparoscopic cryoablation of renal masses: single-center long-term experience. Urology. 2012;80(2):307–14.

    Article  PubMed  Google Scholar 

  8. Yang Wang, Ping Liang, Xiaoling Yu, Zhigang Cheng, Jie Yu, Jun Dong. Ultrasound-guided percutaneous microwave ablation of adrenal metastasis: preliminary results. Int J Hyperthermia 2009;25(6):455–61.

    Google Scholar 

  9. Del Pizzo JJ. Radiofrequency ablation for adrenal lesions. Curr Urol Rep. 2006;7(1):68.

    Google Scholar 

  10. Atwell TD, Wass CT, Charboneau JW, Callstrom MR, Farrell MA, Sengupta S. Malignant hypertension during cryoablation of an adrenal gland tumor. J Vasc Interv Radiol. 2006;17(3):573–5.

    Article  PubMed  Google Scholar 

  11. Carrafiello G, Mangini M, Fontana F, Laganà D, Cotta E, Di Massa A, Piacentino F, Ianniello A, Floridi C, Ierardi AM, Fugazzola C. Radiofrequency ablation for single lung tumours not suitable for surgery: seven years’ experience. Radiol Med. 2012;117(8):1320–32.

    Article  PubMed  CAS  Google Scholar 

  12. Inoue M, Nakatsuka S, Yashiro H, Ito N, Izumi Y, Yamauchi Y, Hashimoto K, Asakura K, Tsukada N, Kawamura M, Nomori H, Kuribayashi S. Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol. 2012;23(3):295–302; quiz 305.

    Article  PubMed  Google Scholar 

  13. Dent TH. Microwave ablation therapy of pulmonary metastases. Radiology. 2013;266(3):995–6.

    Article  PubMed  Google Scholar 

  14. Palussière J, Pellerin-Guignard A, Descat E, Cornélis F, Dixmérias F. Radiofrequency ablation of bone tumours. Diagn Interv Imaging. 2012;93(9):660–4.

    PubMed  Google Scholar 

  15. Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, Paz-Fumagalli R, Hoffman C, Atwell TD, Charboneau JW, Schmit GD, Goetz MP, Rubin J, Brown KJ, Novotny PJ, Sloan JA. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41.

    Article  PubMed  Google Scholar 

  16. Na DG, Lee JH, Jung SL, Kim JH, Sung JY, Shin JH, Kim EK, Lee JH, Kim DW, Park JS, Kim KS, Baek SM, Lee Y, Chong S, Sim JS, Huh JY, Bae JI, Kim KT, Han SY, Bae MY, Kim YS, Baek JH. Korean Society of Thyroid Radiology (KSThR); Korean Society of Radiology. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol. 2012;13(2):117–25.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Feng B, Liang P, Cheng Z, Yu X, Yu J, Han Z, Liu F. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol. 2012;166(6):1031–7.

    Article  PubMed  CAS  Google Scholar 

  18. Liu Q, Song Y, Zhou N, Xu X, Wang Z. Radiofrequency ablation of splenic tumors: a case series. J Gastroenterol Liver Dis. 2013;22(1):105–8.

    Google Scholar 

  19. Jie Y, Liang P, Xiaoling Y, Wang Y, Gao Y. Ultrasound-guided percutaneous microwave ablation of splenic metastasis: report of four cases and literature review. Int J Hyperthermia. 2011;27(5):517–22.

    Article  Google Scholar 

  20. Simon CJ, Dupuy DE. Image-guided ablative techniques in pelvic malignancies: radiofrequency ablation, cryoablation, microwave ablation. Surg Oncol Clin N Am. 2005;14(2):419–31.

    Article  PubMed  Google Scholar 

  21. Qi C, Yu XL, Liang P, Cheng ZG, Liu FY, Han ZY, Yu J. Ultrasound-guided microwave ablation for abdominal wall metastatic tumors: a preliminary study. World J Gastroenterol. 2012;18(23):3008–14.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tabuse K, Katsumi M, Kobayashi Y, et al. Microwave surgery: hepatectomy using a microwave tissue coagulator. World J Surg. 1985;9:136–43.

    Article  PubMed  CAS  Google Scholar 

  23. English NJ, Mac Elroy JM. Molecular dynamics simulations of microwave heating of water. J Chem Phys. 2003;118:1589–92.

    Article  CAS  Google Scholar 

  24. Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia. 2005;21:745–53.

    Article  PubMed  Google Scholar 

  25. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancies: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol. 2000;174:323–31.

    Article  PubMed  CAS  Google Scholar 

  26. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthemia. 2003;3:267–94.

    Article  Google Scholar 

  27. Yu J, Liang P, Yu X, Liu F, Chen L, Wang Y. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Eur J Radiol. 2011;79(1):124–30.

    Article  PubMed  Google Scholar 

  28. Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol. 2009;38:135–43.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25 Suppl 1:S69–83.

    Article  PubMed  Google Scholar 

  30. Li X, Zhang L, Fan W, Zhao M, Wang L, Tang T, Jiang H, Zhang J, Liu Y. Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: results in ex vivo porcine livers. Int J Hyperthemia. 2011;27(3):240–8.

    Article  Google Scholar 

  31. Fan W, Li X, Zhang L, Jiang H, Zhang J. Comparison of microwave ablation and multipolar radiofrequency ablation in vivo using two internally cooled probes. AJR Am J Roentgenol. 2012;198(1):W46–50.

    Article  PubMed  Google Scholar 

  32. Wright AS, Sampson LA, Warner TF. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236:132–9.

    Article  PubMed  Google Scholar 

  33. Brannan JD, Ladtkow CM. Modeling bimodal vessel effects on radio and microwave frequency ablation zones. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5989–92.

    PubMed  Google Scholar 

  34. Mertyna P, Goldberg W, Yang W, Goldberg SN. Thermal ablation a comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model. Acad Radiol. 2009;16(12):1539–48.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bhardwaj N, Strickland AD, Ahmad F, Atanesyan L, West K, Lloyd DM. A comparative histological evaluation of the ablations produced by microwave, cryotherapy and radiofrequency in the liver. Pathology. 2009;41(2):168–72.

    Article  PubMed  CAS  Google Scholar 

  36. Shi W, Liang P, Zhu Q, Yu X, Shao Q, Lu T, Wang Y, Dong B. Microwave ablation: results with double 915 MHz antennas in ex vivo bovine livers. Eur J Radiol. 2011;79(2):214–7.

    Article  PubMed  Google Scholar 

  37. Liang P, Yu J, Lu MD, Dong BW, Yu XL, Zhou XD, Hu B, Xie MX, Cheng W, He W, Jia JW, Lu GR. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J Gastroenterol. 2013;19(33):5430–8.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bertram JM, Yang D, Converse MC, Webster JG, Mahvi D. A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng. 2006;34(3):187–213.

    Article  PubMed  Google Scholar 

  39. Longo I, Gentili GB, Cerretelli M, Tosoratti N. A coaxial antenna with miniaturized choke for minimally invasive interstitial heating. IEEE Trans Biomed Eng. 2003;50:82–8.

    Article  PubMed  Google Scholar 

  40. Schaller G, Erb J, Engelbrecht R. Field simulation of dipole antennas for interstitial microwave hyperthermia. IEEE Trans Microwave Theory Tech. 1996;44:887–95.

    Article  Google Scholar 

  41. Hoffmann R, Rempp H, Erhard L, Blumenstock G, Pereira PL, Claussen CD, Clasen S. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology. 2013;268(1):89–97.

    Article  PubMed  Google Scholar 

  42. Kuang M, Lu MD, Xie XY, Xu HX, Mo LQ, Liu GJ, Xu ZF, Zheng YL, Liang JY. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna — experimental and clinical studies. Radiology. 2007;242:914–24.

    Article  PubMed  Google Scholar 

  43. Sun Y, Wang Y, Ni X, Gao Y, Shao Q, Liu L, Liang P. Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: results in in vivo porcine livers. Am J Roentgenol. 2009;192(2):511–4.

    Article  Google Scholar 

  44. Wright AS, Lee Jr FT, Mahvi DM. Hepatic microwave ablation with multiple antennas results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol. 2003;10:275–83.

    Article  PubMed  Google Scholar 

  45. Shock SA, Meredith K, Warner TF, Sampson LA, Wright AS, Winter TC, Mahvi DM, Fine JP, Lee Jr FT. Microwave ablation with loop antenna: in vivo porcine liver model. Radiology. 2004;231:143–9.

    Article  PubMed  Google Scholar 

  46. Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee Jr FT. Microwave ablation with a single small-gauge triaxial antenna: in vivo porcine liver model. Radiology. 2007;242:435–40.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Pereira PL, Trübenbach J, Schenk M, Subke J, Kroeber S, Schaefer I, Remy CT, Schmidt D, Brieger J, Claussen CD. Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology. 2004;232(2):482–90.

    Article  PubMed  Google Scholar 

  48. Lu MD, Yu XL, Li AH, Jiang TA, Chen MH, Zhao BZ, Zhou XD, Wang JR. Comparison of contrast enhanced ultrasound and contrast enhanced CT or MRI in monitoring percutaneous thermal ablation procedure in patients with hepatocellular carcinoma: a multi-center study in China. Ultrasound Med Biol. 2007;33((11):1736–49.

    Article  PubMed  Google Scholar 

  49. Liu FY, Yu XL, Liang P, Wang Y, Zhou P, Yu J. Comparison of percutaneous 915 MHz microwave ablation and 2450 MHz microwave ablation in large hepatocellular carcinoma. Int J Hyperthermia. 2010;26(5):448–55.

    Article  PubMed  Google Scholar 

  50. Yin XY, Xie XY, Lu MD, Xu HX, Xu ZF, Kuang M, Liu GJ, Liang JY, Lau WY. Percutaneous thermal ablation of medium and large hepatocellular carcinoma:long-term outcome and prognostic factors. Cancer. 2009;115(9):1914–23.

    Article  PubMed  CAS  Google Scholar 

  51. Kanaoka Y, Hirai K, Ishiko O. Successful microwave endometrial ablation in a uterus enlarged by adenomyosis. Osaka City Med J. 2004;50(1):47–51.

    PubMed  Google Scholar 

  52. Takamura M, Murakami T, Shibata T, Ishida T, Niinobu T, Kawata S, Shimizu J, Kim T, Monden M, Nakamura H. Microwave coagulation therapy with interruption of hepatic blood in- or outflow: an experimental study. JVIR. 2001;12:619–22.

    Article  PubMed  CAS  Google Scholar 

  53. Shibata T, Murakami T, Ogata N. Percutaneous microwave coagulation therapy for patients with primary and metastatic hepatic tumors during interruption of hepatic blood flow. Cancer. 2000;88:301–11.

    Article  Google Scholar 

  54. Liu C, Liang P, Liu F, Wang Y, Li X, Han Z, Liu C. MWA combined with TACE as a combined therapy for unresectable large-sized hepatocellular carcinoma. Int J Hyperthermia. 2011;27(7):654–62.

    Article  PubMed  Google Scholar 

  55. Zhou P, Liu X, Li R, Nie W. Percutaneous coagulation therapy of hepatocellular carcinoma by combining microwave coagulation therapy and ethanol injection. Eur J Radiol. 2009;71(2):338–42.

    Article  PubMed  Google Scholar 

  56. Shimada S, Hirota M, Beppu T, Shiomori K, Marutsuka T, Matsuo A, Tanaka E, Ogawa M. A new procedure of percutaneous microwave coagulation therapy under artificial hydrothorax for patients with liver tumors in the hepatic dome. Surg Today. 2001;31(1):40–4.

    Article  PubMed  CAS  Google Scholar 

  57. Park SY, Tak WY, Jeon SW, Cho CM, Kweon YO, Kim SK, Choi YH. The efficacy of intraperitoneal saline infusion for percutaneous radiofrequency ablation for hepatocellular carcinoma. Eur J Radiol. 2010;74(3):536–40.

    Article  PubMed  Google Scholar 

  58. Raman SS, Aziz D, Chang X, Ye M, Sayre J, Lassman C, Lu DS. Minimizing central bile duct injury during radiofrequency ablation: use of intraductal chilled saline perfusion–initial observations from a study in pigs. Radiology. 2004;232(1):154–9.

    Article  PubMed  Google Scholar 

  59. Liu FY, Yu XL, Liang P, Cheng ZG, Han ZY, Dong BW, Zhang XH. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol. 2012;81(7):1455–9.

    Article  PubMed  Google Scholar 

  60. Seki T, Wakabayashi M, Nakagawa T, Imamura M, Tamai T, Nishimura A, Yamashiki N, Okamura A, Inoue K. Percutaneous microwave coagulation therapy for patients with small hepatocellular carinoma: comparison with percutaneous ethanol injection therapy. Cancer. 1999;85:1694–702.

    Article  PubMed  CAS  Google Scholar 

  61. Shibata T, Iimuro Y, Yamamoto Y, Maetani Y, Ametani F, Itoh K, Konishi J. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology. 2002;223:331–7.

    Article  PubMed  Google Scholar 

  62. Wang ZL, Liang P, Dong BW, Yu XL, de Yu J. Prognostic factors and recurrence of small hepatocellular carcinoma after hepatic resection or microwave ablation: a retrospective study. J Gastrointest Surg. 2008;12(2):327–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liang MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, B., Yu, J., Liang, P. (2015). Microwave Ablation: Principles and Techniques. In: Liang, P., Yu, Xl., Yu, J. (eds) Microwave Ablation Treatment of Solid Tumors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9315-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9315-5_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9314-8

  • Online ISBN: 978-94-017-9315-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics