Skip to main content

Potential Effects of Climate Change on Animal-Habitat Interactions

  • Chapter
  • First Online:
Animals' Influence on the Landscape and Ecological Importance
  • 1000 Accesses

Abstract

There still are great uncertainties in the prediction of future climate. It also is uncertain whether the interrelationships of the many biological and physical factors and their relative intensity will be the same in a warmer climate. Changes of temperatures, precipitation regimes and increasing CO2 are discussed by way of examples, with the focus on their possible effects on the interactions of animals and habitats in different climatic zones. Human and animals’ impact might overlap the influence of climate change and animals’ response locally and regionally. The effects of present landscape and wildlife management practices and of introduction and reintroduction of animal species may take a different course than was originally intended. We usually rely on not well-substantiated hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIA. (2004). Impacts of a warming Arctic. Arctic climate impact assessment (pp. 1–144). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ammunet, T., Heisswolf, A., Klemola, N., & Klemola, T. (2010). Expansion of the winter moth outbreak range: No restrictive effects of competition with the resident autumnal moth. Ecological Entomology, 35, 45–52.

    Article  Google Scholar 

  • Ammunet, T., Klemola, T., & Saikkonen, K. (2011). Impact of host plant quality on geometrid moth expansion on environment and local population scales. Ecography, 34, 848–855.

    Article  Google Scholar 

  • Ammunet, T., Klemola, T., & Parvinen, K. (2014). Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically bases modelling approach. Theoretical Population Biology, 92, 107–117.

    Article  Google Scholar 

  • Aukema, B. H., Carroll, A. L., Zheng, Y., Zhu, J., Raffa, K. F., Moore, R. D., Stahl, K., & Taylor, S. W. (2008). Movement of outbreak populations of mountain pine beetle: Influence of spatiotemporal patterns and climate. Ecography, 31, 348–358.

    Article  Google Scholar 

  • Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hickie, J. A., Kelsey, R. G., Negrón, J. F., & Seybold, S. J. (2012). Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. BioScience, 60(8), 602–613.

    Article  Google Scholar 

  • Berg, E. E., Henry, J. D., Fastie, C. L., De Volder, A. D., & Matsuoka, S. M. (2006). Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219–232.

    Article  Google Scholar 

  • Boersma, P. D., & Rebstock, G. A. (2014). Climate change increases reproductive failure in Magellanic penguins. PLoS One, 9(1), e85602. doi:10.1371/Journal.pone0085602.

    Article  Google Scholar 

  • Botkin, D. B., Mellilo, J. M., & Wu, L. S.-Y. (1981). How ecosystem processes are linked to mammal population dynamics. In C.-W. Fowler & T. D. Smith (Eds.), Dynamics of large mammal populations (pp. 373–387). New York: Wiley.

    Google Scholar 

  • Brooke, M. D. L. (2004). Albatrosses and petrels across the world. Oxford: Oxford University Press.

    Google Scholar 

  • Buitenwerf, R., Bond, W. J., Stevens, N., & Trollope, W. S. W. (2012). Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biology, 18, 675–684.

    Article  Google Scholar 

  • Bylund, H. (1997). Stand age-structure influence in a low population peak of Epirrita autumnata. Ecography, 20, 319–329.

    Article  Google Scholar 

  • Bylund, H. (1999). Climate and the population dynamics of two insect outbreak species in the north. Ecological Bulletins, 47, 54–62.

    Google Scholar 

  • Clarke, A. (2008). Introduction to the dynamics of El Nino and the southern oscillation (p. 324). Waltham: Academic Press.

    Google Scholar 

  • Cobb, S. (1980). Tsavo, the first thirty years. Swara, 3, 12–15.

    Google Scholar 

  • Corfield, T. F. (1973). Elephant mortality in Tsavon National Park, Kenya. East African Wildlife Journal, 11, 339–368.

    Article  Google Scholar 

  • Craine, J. M. (2013). Long-term climate sensitivity of grazers performance: A croo-site study. PLoS ONE. doi:10.1371/journal.pone.0067065.

    Google Scholar 

  • Croxall, J. P., Trathan, P. N., & Murphy, E. J. (2002). Environmental change and Antarctic seabird populations. Science, 297, 1510–1514.

    Article  CAS  Google Scholar 

  • den Herder, M., Virtanen, R., & Roininen, H. (2008). Reindeer herbivory reduces willow growth and grouse forage in a forest-tundra ecotone. Basic and Applied Ecology, 9, 324–331.

    Article  Google Scholar 

  • Duncan, C., Chauvenet, L. M., McRae, L. M., & Pettorelli, N. (2012). Predicting the future impact for droughts on ungulate population in arid and semi-arid environments. PLoS One, Research Article. doi:10.1371/journal.pone.0051490.

  • Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B., Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., Shurin, J. B., Sinclair, A. R. E., Soulé, M. E., Virtanen, R., & Wardle, D. A. (2011). Trophic downgrading of Planet Earth. Science, 333, 301–306.

    Article  CAS  Google Scholar 

  • Everson, I. (1977). The living resources of the Southern Ocean. Rome: UN Development Program, Food and Agricultural Organization.

    Google Scholar 

  • Forcada, J., & Trathan, P. N. (2009). Penguin responses to climate change in the Southern Ocean. Global Change Biology, 15, 1618–1630.

    Article  Google Scholar 

  • Gallana, M., Ryser-Degiorgis, M.-P., Wahli, T., & Segner, H. (2013). Climate change and infectious diseases of wildlife. Altered interactions between pathogens, vectors and hosts. Current Zoology, 59(3), 427–437.

    Google Scholar 

  • Gandiva, E., & Zisadza, P. (2010). Wildlife management in Gonarezhow National Park, Southeast Zimbabwe: Climate change and implications for management. Nature et Faune, 25(1), 95–104.

    Google Scholar 

  • Gille, S. T. (2002). Warming of the southern ocean since the 1950s. Science, 295, 1275–1277.

    Article  CAS  Google Scholar 

  • Giorgi, F., & Hewitson, B. (2001). Regional climate information – Evaluation and projections. In J. T. Houghtons, Y. Ding, D. J. Griggs, P. Noguer, P. Van der Linden, X. Dai, K. Maskell, & C. A. Johnsons (Eds.), Climate change 2001. The scientific basis. Contributions of working group 1 to the third assessment report of the Intergovernmental Panel on Climate Change (pp. 583–638). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hakkarainen, H., Virtanen, R., Honkanen, J. O., & Roininen, H. (2007). Willow bud and shoot foraging by ptarmigan in relation to snow level in NW Finnish Lapland. Polar Biology, 30, 619–624.

    Article  Google Scholar 

  • Halvorsen, O. (2012). Reindeer parasites, weather and warming of the Arctic. Polar Biology, 35, 1749–1752.

    Article  Google Scholar 

  • Henttonen, H., & Wallgren, H. (2001). Rodent dynamics and communities in the birch forest zone of northern Fennoscandia. In F. E. Wielgolaksi (Ed.), Nordic mountain birch ecosystems (Man and the Biosphere Series 27, pp. 261–278). Paris/New York/London: Parthenon Publishing.

    Google Scholar 

  • Higgins, S. I., & Scheiter, S. (2012). Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature, 488, 209–212. doi:10.1038/nature11238.

    Article  CAS  Google Scholar 

  • Holtmeier, F.-K. (1978). Die bodennahen Winde in den Hochlagen der Indian Peaks Section, Colorado Front Range, USA. Münstersche Geographische Arbeiten, 3, 3–47.

    Google Scholar 

  • Holtmeier, F.-K. (1996). Die Wirkungen des Windes in der subalpinen und alpinen Stufe der Front Range, Colorado, U.S.A. Arbeiten aus dem Institut für Landschaftsökologie, Westfälische Wilhelms-Universität, Münster, 1, 19–45.

    Google Scholar 

  • Holtmeier, F.-K. (2000). Die Höhengrenze der Gebirgswälder (Arbeiten aus dem Institut für Landschaftsökologie 8). Münster: Westfälische Wilhelms-Universität.

    Google Scholar 

  • Holtmeier, F.-K. (2005). Relocation of snow and its effects in the treeline ecotone – With special regard to the Rocky Mountains, the Alps and Northern Europe. Die Erde, 136(4), 343–373.

    Google Scholar 

  • Holtmeier, F.-K. (2009). Mountain timberlines. Ecology, patchiness, and dynamics (Advances in Global Change Research 36). Dordrecht: Springer Science+Business Media B. V.

    Book  Google Scholar 

  • Holtmeier, F.-K., & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395–410.

    Article  Google Scholar 

  • Holtmeier, F.-K., & Broll, G. (2006). Radiocarbon-dated peat and wood remains from the Finnish Subarctic – Evidence of treeline and landscape history. The Holocene, 16(5), 743–751.

    Article  Google Scholar 

  • Holtmeier, F.-K., & Broll, G. (2012). Landform influences on treeline patchiness and dynamics in a changing climate. Physical Geography, 33(5), 403–437.

    Article  Google Scholar 

  • Hulme, P. (2005). Adapting to climate change: Is there scope for ecological management in face of a global threat? Journal of Applied Ecology, 42, 784–794.

    Article  Google Scholar 

  • Ims, R. A., & Fuglei, E. (2005). Trophic interaction cycles in tundra ecosystems and the impact of climate change. BioScience, 55, 311–322.

    Article  Google Scholar 

  • Ims, R. A., Henden, J.-A., & Killengren, S. T. (2008). Collapsing population cycles. Trends in Ecology and Evolution, 23(2), 79–86.

    Article  Google Scholar 

  • Jacob, J., & Tkadlec, E. (2010). Rodent outbreaks in other regions: A search for generalities. In G. R. Singleton, S. R. Belmain, P. R. Brown, & B. Hardy (Eds.), Rodent outbreaks: Ecology and impacts (pp. 207–223). Los Baños: International Rice Research Institute (IRRI).

    Google Scholar 

  • Jones, C. (2000). Sooty shearwater (Puffinus griseus) breeding colonies on mainland South Island, New Zealand: Evidence of decline and predictors of persistence. New Zealand Journal of Zoology, 27, 327–334.

    Article  Google Scholar 

  • Kaeslin, E., Redmond, I., & Dudley, N. (Eds.). (2012). Wildlife in a changing climate (FAO Forestry Paper 167). Rome: FAO.

    Google Scholar 

  • Karhu, K. J., & Neuvonen, S. (1998). Wood ants an geometrid defoliator of birch: Predation outweighs beneficial effects through the host plant. Oecologia, 113, 509–516.

    Article  Google Scholar 

  • Kausrud, K. L., Mysterud, A., Steen, H., Vik, J. O., Østbye, E., Cazelles, B., Framstad, E., Eikeset, A. M., Mysterud, I., Solhøy, T., & Stenseth, N. C. (2008). Linking climate change to lemming cycles. Nature, 456, 93–97.

    Article  CAS  Google Scholar 

  • Kutz, S., Hoberg, E. P., Polley, L., & Jenkins, R. E. (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings of the Royal Society B, 272, 2571–2576.

    Article  CAS  Google Scholar 

  • Laine, K., & Niemelä, P. (1980). The influence of ants on the survival of mountain birch during an Oporinia autumnata (Lep. Geometridae) outbreak. Oecologia, 47, 39–42.

    Article  Google Scholar 

  • Laws, R. M. (1985). The ecology of the Southern Ocean. American Scientist, 73, 26–40.

    Google Scholar 

  • Lehmann, C. E. R., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald, S., Hoffmann, W. A., Hanan, N. P., Williams, R. J., Fensham, R. J., Felfili, J., Hutley, L. B., Ratnam, J., Jose, J. S., Montes, R., Franklin, D., Haidar, R., Bowman, D. M. J., & Bond, W. J. (2014). Savanna vegetation-fire-climate relationships differ among continents. Science, 343, 548–552.

    Article  CAS  Google Scholar 

  • Leuthold, W. (1978). Kann Afrikas Großwild überleben? Vierteljahresschrift der Naturforschenden Gesellschaft Zürich, 123, 333–340.

    Google Scholar 

  • Liu, X., Sun, L., Xie, U., Yin, X., & Wang, Y. (2005). A 1300-year record of penguin populations at Ardley Island in the Antarctic, as deduced from geochemical data in the ornithogenic lake sediments. Arctic, Antarctic, and Alpine Research, 37(4), 490–498.

    Article  Google Scholar 

  • Logan, J. A., & Powell, J. A. (2001). Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47, 160–173.

    Google Scholar 

  • Luque-Larena, J. J., Mougeot, F., Viñuela, J., Jareño, D., Arroyo, L., Lambin, X., & Arroyo, B. (2013). Recent large-scale expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic and Applied Ecology. http://dx.doi.org/1016/j.baae.2013.04.006

  • Maness, H., Kushner, P. J., & Fung, I. (2013). Summertime climate response to mountain beetle disturbance in British Columbia. Nature Geoscience, 6, 65–70.

    CAS  Google Scholar 

  • Mitton, J. B., & Ferrenberg, S. M. (2012). Mountain pine beetle develops an unprecedented summer generation in response to climatic warming. The American Naturalist 1979(5), 9 pp. doi:10.1086/665007.

  • Natural Resources Canada. (2005). Mountain pine beetle initiative interim report. Victoria: Canadian Forest Service, Pacific Forestry Centre.

    Google Scholar 

  • Neuvonen, S., Ruohomäki, K., Bylund, H., & Kaitaniemi, P. (2001). Insect herbivores and herbivory effects on mountain birch dynamics. In F. E. Wielgolaski (Ed.), Nordic mountain birch ecosystems (Man and the Biosphere Series 72, pp. 207–239). Paris/New York/London: UNESCO/Parthenon Publishing Group.

    Google Scholar 

  • Nogués-Bravo, D., Araújo, M. B., Errea, M. P., & Martínez-Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st century. Global Environmental Change, 17, 420–428.

    Article  Google Scholar 

  • Ogutu, J. O., & Owen-Smith, N. (2003). ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecological Letters, 6(5), 412–419.

    Article  Google Scholar 

  • Ogutu, J. O., Piepho, H. P., Dublin, H. T., Bhola, N., & Reid, R. S. (2008). Rainfall influences on ungulate population abundance in the Mara-Serengit ecosystem. Journal of Animal Ecology, 77, 814–829.

    Article  CAS  Google Scholar 

  • Olofsson, J., Oksanen, L., Callaghan, T., Hulme, P. E., Oksanen, T., & Suominen, O. (2009). Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology, 15, 2681–2693.

    Article  Google Scholar 

  • Ost, E., & Pedersen, C. (2008). Opposing plant community responses to warming with and without herbivores. Proceedings of the National Academy of the Science USA, 105(34), 12353–12358.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 241, 37–42.

    Article  Google Scholar 

  • Post, E., & Stenseth, N. C. (1999). Climate variability, plant phenology and northern ungulates. Ecology, 80, 1322–1339.

    Article  Google Scholar 

  • Pulliainen, E., & Iivanainen, J. (1981). Winter nutrition of the willow grouse (Lagopus lagopus L.) in the extreme north of Finland. Annales Zoologici Fennici, 18, 263–269.

    Google Scholar 

  • Räisänen, J. (1994). A comparison of the results of seven CGM experiments in northern Europe. Geophysica, 3, 3–30.

    Google Scholar 

  • Ripple, W. J., Estes, J. A., Beschat, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., & Wirsing, A. J. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484. doi:10.1126/science,1241484.

  • Ritchie, E. G., & Bolitho, E. E. (2008). Australia’s savanna herbivores: Bioclimatic distribution and an assessment of the potential impact of regional climate change. Physiological and Biochemical Zoology, 81(6), 880–890.

    Article  Google Scholar 

  • Robertson, C. J. R. (1998). Factors influencing the threatened performance of the Northern Royal Albatross. In G. Robertson & R. Gales (Eds.), Albatross biology and conservation (pp. 99–104). Chipping North: Surrey Beatty & Sons.

    Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming in animal and plant populations. Nature, 421(2), 57–60.

    Article  CAS  Google Scholar 

  • Scott, D., Scofield, P., Hunter, C., & Fletcher, D. (2008). Decline of sooty shearwater, Puffinus griseus, on the Snares, New Zealand. Papers and Proceedings of the Royal Society of Tasmania, 142(1), 185–196.

    Google Scholar 

  • Siegel, V. (2006). Der Einfluss von Fischerei und Klima auf die Bestände des antarktichen Krill. In J. L. Lozán, H. Graßl, H. W. Huberten, P. Hupfer, L. Karbe, & G. Piepenburg (Eds., in Kooperation mit GEO). Warnsignale auf den Polarregionen. Wissenschaftliche Fakten. Wissenschaftliche Auswertungen (pp. 121–125). Hamburg: Springer.

    Google Scholar 

  • Solbreck, C. (1991). Predicting insect faunal dynamics in a changing climate – A north European perspective. In J. I. Holten, G. Paulsen, & W. C. Oechel (Eds.), Impacts of climate change on natural ecosystems with emphasis on boreal and arctic/alpine ecosystems, Trondheim, 27–29 November 1990, pp. 176–185.

    Google Scholar 

  • Taylor, S. W., Carroll, A. L., Alfaro, R. I., & Safranyik, L. (2006). Forest, climate and mountain pine beetle outbreak dynamics in western Canada. In L. Safranyik & B. Wilson (Eds.), The mountain pine beetle: A synthesis of biology, management and impacts in lodgepole pine (pp. 67–94). Victoria: Natural Resources Canada, Canadian Forest Service.

    Google Scholar 

  • Umeå universitet. (2014, February 13). Reindeer counteract certain effects of climate change. ScienceDaily. www.sciencedaily.com/releases/2014/02/140213084052.htm

  • Veit, R. R., Pyle, P., & McGowan, J. A. (1996). Ocean warming and long-term change to pelagic bird abundance within the California Current system. Marine Ecology Progress Series, 139, 11–18.

    Article  Google Scholar 

  • Veit, R. R., McGowan, J. A., Ainley, D. G., Wahls, T. R., & Pyle, P. (1997). Apex marine predator declines ninety percent in association with changing oceanic climate. Global Change Biology, 3, 23–28.

    Article  Google Scholar 

  • Virtanen, T., & Neuvonen, S. (1999). Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoides. Oecologia, 120, 92–101.

    Article  Google Scholar 

  • Virtanen, T., Neuvonen, S., & Nikula, A. (1998). Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with Geographical Information Systems: Predictions of current and warmer climate scenarios. Journal of Applied Ecology, 32, 1–12.

    Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Guldberg, H.-G., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.

    Article  CAS  Google Scholar 

  • Weimerskirch, H., Inchausti, P., Guinet, C., & Barbraud, C. (2003). Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarctic Science, 15(2), 249–256.

    Article  Google Scholar 

  • Wigley, B. J., Bond, W. J., & Hoffman, M. T. (2010). Thicket expansion in a South African savanna under divergent land use: Local vs. global drivers? Global Change Biology, 16, 964–976.

    Article  Google Scholar 

  • Williams, D. W., & Liebhold, A. M. (1995). Forest defoliators and climate change: potential changes in spatial distribution of outbreaks of Western spruce budworm (Lepidoptera: Tortricidae) and Gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 24, 1–9.

    Google Scholar 

  • Williams, R. J., Carter, J., Duff, G. A., Woinarski, J. C. Z., Cook, G. D., & Farrer, S. L. (2005). Carbon accounting, land management, science and policy uncertainties in Australian savanna landscapes: Introduction and overview. Australian Journal of Botany, 53, 583–588.

    Article  Google Scholar 

  • Zöckler, C., Liles, L., Fish, L., Wolf, A., Rees, G., & Danks, F. (2008). Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region. Climate Change, 87, 119–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holtmeier, FK. (2015). Potential Effects of Climate Change on Animal-Habitat Interactions. In: Animals' Influence on the Landscape and Ecological Importance. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9294-3_7

Download citation

Publish with us

Policies and ethics