The Production of Ammonia by Multiheme Cytochromes c

  • Jörg Simon
  • Peter M. H. Kroneck
Part of the Metal Ions in Life Sciences book series (MILS, volume 14)


The global biogeochemical nitrogen cycle is essential for life on Earth. Many of the underlying biotic reactions are catalyzed by a multitude of prokaryotic and eukaryotic life forms whereas others are exclusively carried out by microorganisms. The last century has seen the rise of a dramatic imbalance in the global nitrogen cycle due to human behavior that was mainly caused by the invention of the Haber-Bosch process. Its main product, ammonia, is a chemically reactive and biotically favorable form of bound nitrogen. The anthropogenic supply of reduced nitrogen to the biosphere in the form of ammonia, for example during environmental fertilization, livestock farming, and industrial processes, is mandatory in feeding an increasing world population. In this chapter, environmental ammonia pollution is linked to the activity of microbial metalloenzymes involved in respiratory energy metabolism and bioenergetics. Ammonia-producing multiheme cytochromes c are discussed as paradigm enzymes.


biogeochemical nitrogen cycle climate change cytochrome c nitrite reductase multiheme cytochrome c family NrfA 



The authors are grateful to Sascha Hein and Melanie Kern (Technische Universität Darmstadt) for providing unpublished data on NrfA phylogeny, and to Oliver Einsle (Albert-Ludwigs-Universität Freiburg) for stimulating discussions. Cited own work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (JS, PK) and the Volkswagen-Stiftung (PK).


  1. 1.
    M. Rudolf, P. M. H. Kroneck, Met. Ions Biol. Syst. 2005, 43, 75–103.PubMedGoogle Scholar
  2. 2.
    J. Rockström, W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J. A. Foley, Nature 2009, 461, 472 –475.PubMedCrossRefGoogle Scholar
  3. 3.
    L. B. Maia, J. J. G. Moura, Chem. Rev. 2014, 114, 5273–5357.Google Scholar
  4. 4.
    J. A. Brandes, A. H. Devol, C. Deutsch, Chem. Rev. 2007, 107, 577–589.PubMedCrossRefGoogle Scholar
  5. 5.
    P. G. Falkowsky, Nature 2007, 387, 272–275.CrossRefGoogle Scholar
  6. 6.
    J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend, C. J. Vörösmarty, Biogeochemistry 2004, 70,153–226.CrossRefGoogle Scholar
  7. 7.
    Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases, Eds P. M. H. Kroneck, M. E. Sosa Torres; Vol. 15 of Metal Ions in Life Sciences; Eds A. Sigel, H. Sigel, R. K. O. Sigel; Springer International Publishing AG, Cham, Switzerland, 2015.Google Scholar
  8. 8.
    D. K. Newman, J. F. Banfield, Science 2002, 296, 1071–1077.PubMedCrossRefGoogle Scholar
  9. 9.
    A. L. Reysenbach, E. Shock, Science 2002, 296, 1077–1082.PubMedCrossRefGoogle Scholar
  10. 10.
    M. Strous, J. A. Fuerst, E. H. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, M. S. Jetten, Nature 1999, 400, 446–449.PubMedCrossRefGoogle Scholar
  11. 11.
    A. H. Devol, Nature 2003, 422, 575–576.PubMedCrossRefGoogle Scholar
  12. 12.
    C. R. Penton, A. H. Devol, J. M. Tiedje, Appl. Environ. Microbiol. 2006, 72, 6829–6832.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    M. Ali, L.-Y. Chai, C.-J. Tang, P. Zheng, X.-B. Min, Z.-H. Yang, L. X., Y.-X. Song, Biomed. Res. Int. 2013, doi:  10.1155/2013/134914
  14. 14.
    B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. Op den Camp, H. R. Harhangi, E. M. Janssen-Megens, K.-J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, M. Strous, Nature 2011, 479,127–130.PubMedCrossRefGoogle Scholar
  15. 15.
    C. Deutsch, J. L. Sarmiento, D. M. Sigman, N. Gruber, J. P. Dunne, Nature 2007, 445, 163–167.PubMedCrossRefGoogle Scholar
  16. 16.
    D. G. Capone, A. N. Knapp, Nature 2007, 445, 159–160.PubMedCrossRefGoogle Scholar
  17. 17.
    B. B. Ward, Science 2013, 341, 352–353.PubMedCrossRefGoogle Scholar
  18. 18.
    D. J. Richardson, Cell. Mol. Life Sci. 2001, 58, 165–178.PubMedCrossRefGoogle Scholar
  19. 19.
    J. Simon, FEMS Microbiol. Rev. 2002, 26, 285–309.PubMedCrossRefGoogle Scholar
  20. 20.
    O. Einsle, P. M. H. Kroneck, Biol. Chem. 2004, 385, 875–883.PubMedCrossRefGoogle Scholar
  21. 21.
    G. Fritz, O. Einsle, M. Rudolf, A. Schiffer, P. M. H. Kroneck, J. Mol. Microbiol. Biotechnol. 2005, 10, 223–233.PubMedCrossRefGoogle Scholar
  22. 22.
    M. Kern, J. Simon, Biochim. Biophys. Acta 2009, 1787, 646–656.PubMedCrossRefGoogle Scholar
  23. 23.
    J. Simon, M. Kern, B. Hermann, O. Einsle, J. N. Butt, Biochem. Soc. Trans. 2011, 39, 1864–1870.PubMedCrossRefGoogle Scholar
  24. 24.
    J. Simon, M. G. Klotz, Biochim. Biophys. Acta 2013, 1827, 114–135.PubMedCrossRefGoogle Scholar
  25. 25.
    J. Simon, P. M. H. Kroneck, Adv. Microbial Physiol. 2013, 62, 45–117.CrossRefGoogle Scholar
  26. 26.
    J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th edn, HarperCollins College Publishers, 1993, pp. 405–408.Google Scholar
  27. 27.
    E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 3rd edn, Pearson, Edinburgh Gate, Harlow, UK, 2008, pp. 433–455.Google Scholar
  28. 28.
    R. A. Alderden, M. D. Hall, T. W. Hambley, J. Chem. Ed. 2006, 83, 728–734.CrossRefGoogle Scholar
  29. 29.
    S.N. Behera, M. Sharma, V. P. Aneja, R. Balasubramanian, Environ. Sci. Pollut. Res. 2013, 20, 8092–8131.CrossRefGoogle Scholar
  30. 30.
    M. A. Sutton, S. Reis, S. N. Riddick, U. Dragosits, E. Nemitz, M. R.Theobald, Y. S. Tang, C. F. Braban, M. Vieno, A. J. Dore, R. F. Mitchell, S. Wanless, F. Daunt, D. Fowler, T. D. Blackall, C. Milford, C. R. Flechard, B. Loubet, R. Massad, P. Cellier, E. Personne, P. F. Coheur, L. Clarisse, M. Van Damme, Y. Ngadi, C. Clerbaux, C. A. Skjøth, C. Geels, O. Hertel, R.J. Wichink Kruit, R. W. Pinder, J. O. Bash, J. T. Walker, D. Simpson, L. Horváth, T. H. Misselbrook, A. Bleeker, F. Dentener, W. de Vries, Phil. Trans. R. Soc. B 2013, 368, 20130166; doi:  10.1098/rstb.2013.0166.
  31. 31.
    Ammonia Gas Monitoring Network (AMoN), within the US National Atmospheric Deposition Program (
  32. 32.
    L. Myles, Nat. Geosci. 2009, 2, 461–462.CrossRefGoogle Scholar
  33. 33.
    S. Singh, B. R. Bakshi, Environ. Sci. Technol. 2013, 47, 9388–9396.PubMedCrossRefGoogle Scholar
  34. 34.
    M. Van Damme, L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J. W. Erisman, P. F. Coheur, Atmos. Chem. Phys. Discuss. 2013, 13, 24301–24342.CrossRefGoogle Scholar
  35. 35.
    A. Bytnerowicz, P. E. Padgett, S. D. Parry, M. E. Fenn, M. J. Arbaugh, The Scientific World 2001, 1(S2), 304–311.CrossRefGoogle Scholar
  36. 36.
    B. Gu, J. Chang, Y. Min, Y. Ge, Q. Zhu, J. N. Galloway, C. Peng, Scientific Reports 2013, 3, 2579, 1–7, doi:  10.1038/srep02579.
  37. 37.
    R. K. Thauer, K. Jungermann, K. Decker, Bacteriol. Rev. 1977, 41, 100–180.PubMedCentralPubMedGoogle Scholar
  38. 38.
    B. Kartal, N. M. de Almeida, W. J. Maalcke, H. J.M. Op den Camp, M. S. M. Jetten, J. T. Keltjens, FEMS Microbiol. Rev. 2013, 37, 428–461.PubMedCrossRefGoogle Scholar
  39. 39.
    T. Fujita, J. Biochem. (Tokyo) 1966, 60, 204–215.Google Scholar
  40. 40.
    T. Brittain, R. Blackmore, C. Greenwood, A. J. Thomson, Eur. J. Biochem. 1992, 209, 793–802.PubMedCrossRefGoogle Scholar
  41. 41.
    W. Schumacher, F. Neese, U. H. Hole, P. M. H. Kroneck, in Transition Metals in Microbial Metabolism, Eds G. Winkelmann, C. J. Carrano, Harwood Academic, Amsterdam, NL, 1997, pp. 329–356.Google Scholar
  42. 42.
    O. Einsle, Meth. Enzymol. 2011, 496, 399–422.PubMedCrossRefGoogle Scholar
  43. 43.
    J. A. Cole, FEMS Microbiol. Lett. 1996, 136, 1–11.PubMedCrossRefGoogle Scholar
  44. 44.
    A. Welsh, J. C. Chee-Sanford, L. M. Connor, F. E. Löffler, R. A. Sanford, Appl. Environ. Microbiol. 2014, 80, 2110–2119.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    K. Heylen, J. Keltjens, Front. Microbiol. 2012, 3, article 371, 1–27, doi:  10.3389/fmicb.2012.00371.
  46. 46.
    D. Mania, K. Heylen, R. J. M. van Spanning, Å. Frostegard, Environ. Microbiol. 2014, in press, doi:  10.1111/1462–2920.12478.
  47. 47.
    B. Strehlitz, B. Gründig, W. Schumacher, P. M. H. Kroneck, K.-D. Vorlop, H. Kotte, Anal. Chem. 1996, 68, 807–816.Google Scholar
  48. 48.
    J. Tan, J. A. Cowan, Biochemistry 1991, 30, 8910–8917.PubMedCrossRefGoogle Scholar
  49. 49.
    M. Rudolf, O. Einsle, F. Neese, P. M. H. Kroneck, Biochem. Soc. Trans. 2002, 30, 649–653.PubMedCrossRefGoogle Scholar
  50. 50.
    A. Darwin, H. Hussain, L. Griffiths, J. Grove, Y. Sambongi, S. Busby, J. Cole, Mol. Microbiol. 1993, 9, 1255–1265.PubMedCrossRefGoogle Scholar
  51. 51.
    W. Schumacher, P. M. H. Kroneck, Arch. Microbiol. 1991, 156, 70–74.CrossRefGoogle Scholar
  52. 52.
    M.-C. Liu, H. D. Peck, Jr., J. Biol. Chem. 1981, 256, 13159–13164.PubMedGoogle Scholar
  53. 53.
    M.-C. Liu, M.-Y. Liu, W. J. Payne, H. D. Peck, Jr., J. Le Gall, D. V. DerVartanian, FEBS Lett. 1987, 218, 227–230.PubMedCrossRefGoogle Scholar
  54. 54.
    W. Schumacher, U. H. Hole, P. M. H. Kroneck, Biochem. Biophys. Res. Commun. 1994, 205, 911–916.PubMedCrossRefGoogle Scholar
  55. 55.
    G. W. Pettigrew, G. R. Moore, Cytochromes c. Biological Aspects, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.CrossRefGoogle Scholar
  56. 56.
    P. M. Wood, Biochim. Biophys. Acta 1984, 768, 293–317.PubMedCrossRefGoogle Scholar
  57. 57.
    S. I. Adachi, S. Nagano, K. Ishimori, Y. Watanabe, I. Morishima, T. Egawa, T. Kitagawa, R. Makino, Biochemistry 1993, 32, 241–252.PubMedCrossRefGoogle Scholar
  58. 58.
    O. Einsle, A. Messerschmidt, P. Stach, G. P. Bourenkov, H. D. Bartunik, R. Huber, P. M. H. Kroneck, Nature 1999, 400, 476–480.PubMedCrossRefGoogle Scholar
  59. 59.
    O. Einsle, P. Stach, A. Messerschmidt, J. Simon, A. Kröger, R. Huber, P. M. H. Kroneck, J. Biol. Chem. 2000, 275, 39608–39616.PubMedCrossRefGoogle Scholar
  60. 60.
    V. A. Bamford, H. C. Angove, H. E. Seward, A. J. Thomson, J. Cole, J. N. Butt, A. M. Hemmings, D. J. Richardson, Biochemistry 2002, 41, 2921–2931.PubMedCrossRefGoogle Scholar
  61. 61.
    C. A. Cunha, S. Macieira, J. M. Dias, G. Almeida, L. L. Goncalves, C. Costa, J. Lampreia, R. Huber, J. J. G. Moura, I. Moura, M. J. Romao, J. Biol. Chem. 2003, 278, 17455–17465.PubMedCrossRefGoogle Scholar
  62. 62.
    M. G. Almeida, S. Macieira, L. L. Goncalves, R. Huber, C. A. Cunha, M. J. Romao, C. Costa, J. Lampreia, J. J. G. Moura, I. Moura, Eur. J. Biochem. 1993, 270, 3904–3915.CrossRefGoogle Scholar
  63. 63.
    M. L. Rodrigues, T. F. Oliveira, I. A. Pereira, M. Archer, EMBO J. 2006, 25, 5951–5960.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    M. Youngblut, E. T. Judd, V. Srajer, B. Sayyed, T. Goelzer, S. J. Elliot, M. Schmidt, A. A. Pacheco, J. Biol. Inorg. Chem. 2012, 17, 647–662.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    M. Kern, F. Eisel, J. Scheithauer, R. G. Kranz, J. Simon, Mol. Microbiol. 2010, 75, 122–137.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    O. Einsle, A. Messerschmidt, R. Huber, P.M.H. Kroneck, F. Neese, J. Am. Chem. Soc. 2002, 124, 11737–11745.PubMedCrossRefGoogle Scholar
  67. 67.
    D. Bykov, F. Neese, J. Biol. Inorg. Chem. 2011, 16, 417–430.PubMedCrossRefGoogle Scholar
  68. 68.
    D. Bykov, F. Neese, J. Biol. Inorg. Chem. 2012, 17, 741–760.PubMedCrossRefGoogle Scholar
  69. 69.
    D. Bykov, M. Plog, F. Neese, J. Biol. Inorg. Chem. 2014, 19, 97–112.PubMedCrossRefGoogle Scholar
  70. 70.
    P. Stach, O. Einsle, W. Schumacher, E. Kurun, P. M. H. Kroneck, J. Inorg. Biochem. 2000, 79, 381–385.PubMedCrossRefGoogle Scholar
  71. 71.
    T. A. Clarke, A. Hemmings, B. Burlat, J. N. Butt, J. A. Cole, D. J. Richardson, Biochem. Soc. Trans. 2006, 34,143– 145.PubMedCrossRefGoogle Scholar
  72. 72.
    P. Lukat, R. Rudolf, P. Stach, A. Messerschmidt, P. M. H. Kroneck, J. Simon, O. Einsle, Biochemistry 2008, 47, 2080–2086.PubMedCrossRefGoogle Scholar
  73. 73.
    J. Simon, R. Gross, O. Einsle, P. M. H. Kroneck, A. Kröger, O. Klimmek, Mol. Microbiol. 2000, 35, 686–696.PubMedCrossRefGoogle Scholar
  74. 74.
    J. Simon, R. Pisa, T. Stein, R. Eichler, O. Klimmek, R. Gross, Eur. J. Biochem. 2001, 268, 5776–5782.PubMedCrossRefGoogle Scholar
  75. 75.
    R. Gross, R. Eichler, J. Simon, Biochem. J. 2005, 390, 689–693.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    J. Simon, in Nitrogen Cycling in Bacteria. Molecular Analysis, Ed J. W. B. Moir, Caister Academic Press, Norfolk, UK, 2011, pp. 39–58Google Scholar
  77. 77.
    J. Simon, R. J. M. van Spanning, D. J. Richardson, Biochim. Biophys. Acta 2008, 1777, 1480–1490.PubMedCrossRefGoogle Scholar
  78. 78.
    H. Hussain, J. Grove, L. Griffiths, S. Busby, J. Cole, Mol. Microbiol. 1994, 12, 153–163.PubMedCrossRefGoogle Scholar
  79. 79.
    B. C. Berks, S. J. Ferguson, J. W. B. Moir, D. J. Richardson, Biochim. Biophys. Acta 1995, 1232, 97–173.PubMedCrossRefGoogle Scholar
  80. 80.
    J. Simon, M. Kern, Biochem. Soc. Trans. 2008, 36, 1011–1016.PubMedCrossRefGoogle Scholar
  81. 81.
    M. Jormakka, K. Yokoyama, T. Yano, M. Tamakoshi, S. Akimoto, T. Shimamura, P. Curmi, S. Iwata, Nat. Struct. Mol. Biol. 2008, 15, 730–737.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    T. A. Clarke, J. A. Cole, D. J. Richardson, A. M. Hemmings, Biochem. J. 2007, 406, 19–30.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    F. Grein, A. R. Ramos, S. S. Venceslau, I. A. C. Pereira, Biochim. Biophys. Acta 2013, 1827, 145–160.PubMedCrossRefGoogle Scholar
  84. 84.
    R. G. Kranz, C. Richard-Fogal, J. S. Taylor, E. R. Frawley, Microbiol. Mol. Biol. Rev. 2009, 73, 510–528.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    D. J. Eaves, J. Grove, W. Staudenmann, P. James, R. K. Poole, S. A. White, I. Griffiths, J. A. Cole, Mol. Microbiol. 1998, 28, 205–216.PubMedCrossRefGoogle Scholar
  86. 86.
    R. Pisa, T. Stein, R. Eichler, R. Gross, J. Simon, Mol. Microbiol. 2002, 43, 763–770.PubMedCrossRefGoogle Scholar
  87. 87.
    M. Kern, J. Scheithauer, R. G. Kranz, J. Simon, Microbiology 2010, 156, 3773–3781.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    J. M. Stevens, D. A. Mavridou, R. Hamer, P. Kritsiligkou, A. D. Goddard, S. J. Ferguson, FEBS J. 2011, 278, 4170–4178.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    J. Simon, L. Hederstedt, FEBS J. 2011, 278, 4179–4188.PubMedCrossRefGoogle Scholar
  90. 90.
    S. R. Poock, E. R. Leach, J. W. B. Moir, J. A. Cole, D. J. Richardson, J. Biol. Chem. 2002, 277, 23664–23669.PubMedCrossRefGoogle Scholar
  91. 91.
    P. C. Mills, G. Rowley, S. Spiro, J. C. D. Hinton, D. J. Richardson, Microbiology 2008, 154, 1218–1228.PubMedCrossRefGoogle Scholar
  92. 92.
    M. Kern, J. Volz, J. Simon, Environ. Microbiol. 2011, 13, 2478–2494.PubMedCrossRefGoogle Scholar
  93. 93.
    R. K. Poole, Biochem. Soc. Trans. 2005, 33, 176–180.PubMedCrossRefGoogle Scholar
  94. 94.
    T. V. Tikhonova, A. Slutsky, A. N. Antipov, K. M. Boyko, K. M. Polyakov, D. Y. Sorokin, R. A. Zvyagilskaya, V. O. Popov, Biochim. Biophys. Acta 2006, 1764, 715–723.PubMedCrossRefGoogle Scholar
  95. 95.
    M. Kern, M.G. Klotz, J. Simon, Mol. Microbiol. 2011, 82,1515–1530.PubMedCrossRefGoogle Scholar
  96. 96.
    C. G. Mowat, E. Rothery, C. S. Miles, L. McIver, M. K. Doherty, K. Drewette, P. Taylor, M. D. Walkinshaw, S. K. Chapman, G. A. Reid, Nat. Struct. Mol. Biol. 2004, 11, 1023–1024.PubMedCrossRefGoogle Scholar
  97. 97.
    S. J. Atkinson, C. G. Mowat, G. A. Reid, S. K. Chapman, FEBS Lett. 2007, 581, 3805–3808.PubMedCrossRefGoogle Scholar
  98. 98.
    K. M. Polyakov, K. M. Boyko, T. V. Tikhonova, A. Slutsky, A. N. Antipov, R. A. Zvyagilskaya, A. N. Popov, G. P Bourenkov, V. S. Lamzin, V. O. Popov, J. Mol. Biol. 2009, 389, 846–862Google Scholar
  99. 99.
    T. V. Tikhonova, A. A. Trofimov, V. O. Popov, Biochemistry (Moscow) 2012, 77, 1129–1138.CrossRefGoogle Scholar
  100. 100.
    T. V. Tikhonova, A. Tikhonov, A. Trofimov, K. M. Polyakov, K. M. Boyko, E. Cherkashin, T. Rakitina, D. Y. Sorokin, V. O. Popov, FEBS J. 2012, 279, 4052–4061.PubMedCrossRefGoogle Scholar
  101. 101.
    N. Igarashi, H. Moriyama, T. Fujiwara, Y. Fukumori, N. Tanaka, Nat. Struct. Biol. 1997, 4, 276–284.PubMedCrossRefGoogle Scholar
  102. 102.
    J. Kostera, M. D. Youngblut, J. M. Slosarczyk, A. A. Pacheco, J. Biol. Inorg. Chem. 2008, 13, 1073–1083PubMedCrossRefGoogle Scholar
  103. 103.
    J. Kostera, J. McGarry, A. A. Pacheco, Biochemistry 2010, 49, 8546–8553.PubMedCrossRefGoogle Scholar
  104. 104.
    R. Schnell, T. Sandalova, U. Hellman, Y. Lindqvist, G. Schneider, J. Biol. Chem. 2005, 280, 27319–27328.PubMedCrossRefGoogle Scholar
  105. 105.
    S. B. Mohan, M. Schmid, M. S. M. Jetten, J. Cole, FEMS Microbiol. Ecol. 2004, 49, 433–443.PubMedCrossRefGoogle Scholar
  106. 106.
    J. W. Erisman, A. Bleeker, J. Galloway, M. S. Sutton, Environ. Pollut. 2007, 150, 140–149.PubMedCrossRefGoogle Scholar
  107. 107.
    D. Fowler, M. Coyle, U. Skiba, M. A. Sutton, J. N. Cape, S. Reis, L. J. Sheppard, A. Jenkins, B. Grizzetti, J. N. Galloway, P. Vitousek, A. Leach, A. F. Bouwman, K. Butterbach–Bahl, F. Dentener, D. Stevenson, M. Amann, M. Voss, Phil. Trans. R. Soc. B 2013, 368, 20130164; doi:  10.1098/rstb.2013.0164.
  108. 108.
    M. Voss, H. W. Bange, J. W. Dippner, J. J. Middelburg, J. P. Montoya, B. Ward, Phil. Trans. R. Soc. B 2013, 368, 20130121; doi:  10.1098/rstb.2013.0121.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    M. Giles, N. Morley, E. M. Baggs, T. J. Daniell, Front. Microbiol. 2012, 3, article 407, 1–16.Google Scholar
  110. 110.
    G. Rowley, D. Hensen, H. Felgate, A. Arkenberg, C. Appia-Ayme, K. Prior, C. Harrington, S. Field, J. N. Butt, D. J. Richardson, Biochem. J. 2012, 441, 755–762.PubMedCrossRefGoogle Scholar
  111. 111.
    M. A. Streminska, H. Felgate, G. Rowley, D. J. Richardson, E. M. Baggs, Environ. Microbiol. Rep. 2012, 4, 66–71.PubMedCrossRefGoogle Scholar
  112. 112.
    M. Luckmann, D. Mania, M. Kern, L. R. Bakken, Å. Frostegård, J. Simon, Microbiology 2014, 160, 1749–1759.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Microbial Energy Conversion and Biotechnology, Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Fachbereich BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations