Skip to main content

Retracted: Nanomechanics: Physics Between Engineering and Chemistry

  • Chapter
  • First Online:
Trends in Nanoscale Mechanics

Abstract

Mechanics at nanometer scale involves physical factors often entirely different from the familiar concepts in macroscopic mechanical engineering (elastic moduli, contact forces, friction etc.). These new features are often of chemical nature: intermolecular forces, thermal fluctuations, chemical bonds. The general aspects and issues of nanomechanics are illustrated by an overview of the properties of nanotubes: linear elastic parameters, nonlinear elastic instabilities and buckling, inelastic relaxation, yield strength and fracture mechanisms, and their kinetic theory. Atomistic scenarios of coalescence-welding and the role of non- covalent forces (supra-molecular interactions) between the nanotubes are also discussed due to their significance in potential applications. A discussion of theoretical and computational work is supplemented by brief summaries of experimental results, for the entire range of the deformation amplitudes.

Editor’s note: Nanomechanics is an area of nanoscale mechanics studying mechanical phenomena, mechanical material properties, mechanical and electro-mechanical behavior of nanoscale material systems and nanostructures of 100 nm or less in size.

An erratum of the original chapter can be found under DOI 10.1007/978-94-017-9263-9_11

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-017-9263-9_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Editor’s notes: B. Yakobson and his colleagues were among the first to perform theoretical modeling of carbon nanotubes, i.e.,

    1993/94—R.S. Ruoff and J. Tersoff team at IBM has done first theoretical modeling of carbon nanotubes and carbon nanotube crystals.

    1996—M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson have carried out first experimental testing of carbon nanotubes with the atomic force microscope (AFM).

    1996—B.I. Yakobson, C.J. Brabec and J. Bernholc have performed molecular dynamics (MD) simulation of the axial buckling and twisting of carbon nanotubes. They have shown the shell-like behavior of carbon nanotubes.

    1997—C.M. Lieber and his team at Harvard University have done similar experimental testing of vibrating carbon nanotubes.

  2. 2.

    Editor’s notes in words of Leonardo da Vinci [about his notes on science]: “… I believe that before I am at the end of this I shall have to repeat [some of] the same things; and therefore, O reader, blame me not, because the subjects are many…” and it is important to encourage the reader.

  3. 3.

    Editor’s notes: “Movement is created by heat and cold.” Leonardo da Vinci, Philosophy, p. 79, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).

  4. 4.

    Editor’s notes: “Therefore O students study mathematics and do not build without foundations.” Leonardo da Vinci, Philosophy, p. 82, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).

  5. 5.

    Editor’s notes: “He who blames the supreme certainty of mathematics feeds on confusion, and will never impose silence upon the contradictions of the sophistical sciences, which occasion a perpetual clamor.” Leonardo da Vinci, Philosophy, p. 83, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906). .

  6. 6.

    Editor’s notes: “Let no one read me who is not mathematician in my beginnings.” Leonardo da Vinci, Philosophy, p. 85, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).

  7. 7.

    Editor’s notes: “Inequality is the cause of all local movements.” Leonardo da Vinci, Aphorisms, p. 89, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).

References

  1. B.I. Yakobson, Morphology and rate of fracture in chemical decomposition of solids. Phys. Rev. Lett. 67(12), 1590–1593 (1991)

    Article  Google Scholar 

  2. B.I. Yakobson, Stress-promoted interface diffusion as a precursor of fracture. J. Chem. Phys. 99(9), 6923–6934 (1993)

    Article  Google Scholar 

  3. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  4. R.B. Phillips, Crystals, Defects and Microstructures. (Cambridge University Press, Cambridge, 2001), p. 780

    Google Scholar 

  5. T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58(20), 13870–13873 (1998)

    Article  Google Scholar 

  6. B.I. Yakobson, R.E. Smalley, Fullerene nanotubes: C1,000,000 and beyond. Am. Scien. 85(4), 324–337 (1997)

    Google Scholar 

  7. B.I. Yakobson, P. Avouris, in Mechanical Properties of Carbon Nanotubes, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001), pp. 287–327

    Google Scholar 

  8. S.A. Chin, Symplectic integrators from composite operator factorizations. Phys. Lett. A 226(6), 344–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Ercolessi, M. Parinello, E. Tosatti, Simulation of gold in the glue model. Philos. Mag. A 58(1), 213–226 (1988)

    Article  Google Scholar 

  10. M.S. Daw, Model of metallic cohesion—the embedded-atom method. Phys. Rev. B 39(11), 7441–7452 (1989)

    Article  Google Scholar 

  11. M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition-metals. Philos. Mag. A 50(1), 45–55 (1984)

    Article  Google Scholar 

  12. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988)

    Article  Google Scholar 

  13. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990)

    Article  Google Scholar 

  14. O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61(6), 3877–3888 (2000)

    Google Scholar 

  15. R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)

    Article  Google Scholar 

  16. O.F. Sankey, R.E. Allen, Atomic forces from electronic energies via the Hellmann-Feynman theorem, with application to semiconductor (110) surface relaxation. Phys. Rev. B 33(10), 7164–7171 (1986); O.F. Sankey, D.J. Niklewski, Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 40(6), 3979–3995 (1989); C.M. Goringe, D.R. Bowler, E. Hernandez, Tight-binding modeling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997)

    Google Scholar 

  17. S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984); W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    Google Scholar 

  18. R.E. Allen, Electron-ion dynamics: a technique for simulating both electronic transitions and ionic motion in molecules and materials. Phys. Rev. B 50(24), 18629–18632 (1994); R.E. Allen, T. Dumitrica, B. Torralva, in Electronic and Structural Response of Materials to Fast Intense Laser Pulses, ed. by K.T. Tsen, Ultrafast Physical Processes in Semiconductors (Academic, New York, 2001), pp. 315–388

    Google Scholar 

  19. K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  20. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  21. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  22. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  23. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)

    Article  Google Scholar 

  24. B.I. Yakobson, C.J. Brabec, J. Bernholc, Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 3, 173–182 (1996)

    Article  Google Scholar 

  25. A. Garg, J. Han, S.B. Sinnott, Interactions of carbon-nanotubule proximal probe tips with diamond and graphite. Phys. Rev. Lett. 81(11), 2260–2263 (1998)

    Article  Google Scholar 

  26. D. Srivastava, M. Menon, K. Cho, Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83(15), 2973–2976 (1999)

    Article  Google Scholar 

  27. B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-Chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)

    Article  Google Scholar 

  28. R.S. Ruoff et al., Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993)

    Article  Google Scholar 

  29. N.G. Chopra et al., Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995)

    Article  Google Scholar 

  30. J.F. Despres, E. Daguerre, K. Lafdi, Flexibility of graphene layers in carbon nanotubes. Carbon 33(1), 87–92 (1995)

    Article  Google Scholar 

  31. S. Iijima, C.J. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089–2092 (1996)

    Article  Google Scholar 

  32. B.I. Yakobson, in Dynamic Topology and Yield Strength of Carbon Nanotubes. Fullerenes, Electrochemical Society (ECS, Paris, Pennington, 1997)

    Google Scholar 

  33. R.E. Smalley, B.I. Yakobson, The future of the fullerenes. Solid State Commun. 107(11), 597–606 (1998)

    Article  Google Scholar 

  34. J.Z. Liu, Q. Zheng, Q. Jiang, Effect of a rippling mode on resonances of carbon nanotubes. Phy. Rev. Lett. 86, 4843–4846 (2001)

    Article  Google Scholar 

  35. B.I. Yakobson, Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72(8), 918–920 (1998)

    Article  Google Scholar 

  36. B.I. Yakobson, Physical Property Modification of Nanotubes. U.S. Patent 6,280,677 B1, 2001

    Google Scholar 

  37. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277 (1998)

    Article  Google Scholar 

  38. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81(21), 4656–4659 (1998)

    Article  Google Scholar 

  39. B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38, 1675 (2000)

    Article  Google Scholar 

  40. G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 88, 065501 (2002)

    Article  Google Scholar 

  41. L. Chico et al., Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76(6), 971–974 (1996)

    Article  Google Scholar 

  42. P.G. Collins et al., Nanotube nanodevice. Science 278, 100–103 (1997)

    Article  Google Scholar 

  43. D. Tekleab, D.L. Carroll, G.G. Samsonidze, B.I. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube. Phys. Rev. B 64, 035419 (2001)

    Article  Google Scholar 

  44. P. Zhang, Y. Huang, H. Gao, K.C. Hwang, Fracture nucleation in SWNT under tension: a continuum analysis incorporating interatomic potential. ASME Trans. J. Appl. Mech. (2002) (in press)

    Google Scholar 

  45. H. Bettinger, T. Dumitrica, G.E. Scuseria, B.I. Yakobson, Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B 65(Rapid Comm.), 041406 (2002)

    Google Scholar 

  46. P. Zhang, V.H. Crespi, Plastic deformations of boron-nitride nanotubes: an unexpected weakness. Phys. Rev. B 62, 11050 (2000)

    Article  Google Scholar 

  47. D. Srivastava, M. Menon, K.J. Cho, Anisotropic nanomechanics of boron nitride nanotubes: nanostructured “skin” effect. Phys. Rev. B 63, 195413 (2001)

    Article  Google Scholar 

  48. G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Energetics of Stone-Wales defects in deformations of monoatomic hexagonal layers. Comp. Mater. Sci. 23, 62–72 (2000)

    Article  Google Scholar 

  49. T. Dumitrica, H. Bettinger, B.I. Yakobson, Stone-Wales barriers and kinetic theory of strength for nanotubes. (2002) (in progress)

    Google Scholar 

  50. C. Wei, K.J. Cho, D. Srivastava, private communication. xxx.lanl.gov/abs/cond-mat/0202513

    Google Scholar 

  51. Y. Zhao, B.I. Yakobson, R.E. Smalley, Dynamic topology of fullerene coalescence. Phys. Rev. Lett. 88, 185501 (2002)

    Article  Google Scholar 

  52. P. Nikolaev et al., Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266, 422 (1997)

    Article  Google Scholar 

  53. M. Terrones et al., Coelescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000)

    Article  Google Scholar 

  54. R. Martel, H.R. Shea, P. Avouris, Rings of single-wall carbon nanotubes. Nature 398, 582 (1999)

    Article  Google Scholar 

  55. B.I. Yakobson, L.S. Couchman. Persistence length and nanomechanics of random coils and bundles of nanotubes. (2002) (submitted)

    Google Scholar 

  56. V.M. Harik, Ranges of applicability of the continuum beam models in the mechanics of carbon nanotubes. Solid State Comm. 120, 331 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Yakobson .

Editor information

Editors and Affiliations

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yakobson, B.I., Dumitrică, T. (2014). Retracted: Nanomechanics: Physics Between Engineering and Chemistry. In: Harik, V. (eds) Trends in Nanoscale Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9263-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9263-9_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9262-2

  • Online ISBN: 978-94-017-9263-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics