Skip to main content

Bioinformatics Tools for Discovery and Functional Analysis of Single Nucleotide Polymorphisms

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

With the high speed DNA sequencing of genome, databases of genome data continue to grow, and the understanding of genetic variation between individuals grows as well. Single nucleotide polymorphisms (SNPs), a main type of genetic variation, are increasingly important resource for understanding the structure and function of the human genome and become a valuable resource for investigating the genetic basis of disease. During the past years, in addition to experimental approaches to characterize specific variants, intense bioinformatics techniques were applied to understand effects of these genetic changes. In the genetics studies, one intends to understand the molecular basis of disease, and computational methods are becoming increasingly important for SNPs selection, prediction and understanding the downstream effects of genetic variation. The review provides systematic information on the available resources and methods for SNPs discovery and analysis. We also report some new results on DNA sequence-based prediction of SNPs in human cytochrome P450, which serves as an example of computational methods to predict and discovery SNPs. Additionally, annotation and prediction of functional SNPs, as well as a comprehensive list of existing tools and online recourses, are reviewed and described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933

    Article  CAS  PubMed  Google Scholar 

  2. Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8(12):1229–1231

    CAS  PubMed  Google Scholar 

  3. Collins FS, Morgan M, Patrinos A (2003) The human genome project: lessons from large-scale biology. Science 300(5617):286–290

    Article  CAS  PubMed  Google Scholar 

  4. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320

    Google Scholar 

  5. Rocha D, Gut I, Jeffreys AJ, Kwok PY, Brookes AJ, Chanock SJ (2006) Seventh international meeting on single nucleotide polymorphism and complex genome analysis: `ever bigger scans and an increasingly variable genome’. Hum Genet 119(4):451–456

    Article  CAS  PubMed  Google Scholar 

  6. Brookes AJ (1999) The essence of SNPs. Gene 234(2):177–186

    Article  CAS  PubMed  Google Scholar 

  7. Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J, Matthews LH, Pavitt R, Plumb RW, Sims SK, Ainscough RM, Attwood J, Bailey JM, Barlow K, Bruskiewich RM, Butcher PN, Carter NP, Chen Y, Clee CM, Coggill PC, Davies J, Davies RM, Dawson E, Francis MD, Joy AA, Lamble RG, Langford CF, Macarthy J, Mall V, Moreland A, Overton-Larty EK, Ross MT, Smith LC, Steward CA, Sulston JE, Tinsley EJ, Turney KJ, Willey DL, Wilson GD, McMurray AA, Dunham I, Rogers J, Bentley DR (2000) An SNP map of human chromosome 22. Nature 407(6803):516–520

    Article  CAS  PubMed  Google Scholar 

  8. Mooney S (2005) Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform 6(1):44–56

    Article  CAS  PubMed  Google Scholar 

  9. Clifford RJ, Edmonson MN, Nguyen C, Scherpbier T, Hu Y, Buetow KH (2004) Bioinformatics tools for single nucleotide polymorphism discovery and analysis. Ann NY Acad Sci 1020:101–109

    Article  CAS  PubMed  Google Scholar 

  10. Yan R, Boutros PC, Jurisica I, Penn LZ (2007) Comparison of machine learning and pattern discovery algorithms for the prediction of human single nucleotide polymorphisms. In: 2007 IEEE international conference on granular computing, pp 452–457

    Google Scholar 

  11. Karinen S, Heikkinen T, Nevanlinna H, Hautaniemi S (2011) Data integration workflow for search of disease driving genes and genetic variants. PLoS One 6(4):e18636

    Google Scholar 

  12. Takeuchi F, Kobayashi S, Ogihara T, Fujioka A, Kato N (2011) Detection of common single nucleotide polymorphisms synthesizing quantitative trait association of rarer causal variants. Genome Res 21(7):1122–1130

    Google Scholar 

  13. Yaspan BL, Bush WS, Torstenson ES, Ma D, Pericak-Vance MA, Ritchie MD, Sutcliffe JS, Haines JL (2011) Genetic analysis of biological pathway data through genomic randomization. Hum Genet 129(5):563–571

    Google Scholar 

  14. Yuan X, Zhang J, Wang Y (2011) Simulating linkage disequilibrium structures in a human population for SNP association studies. Biochem Genet 49(5–6):395–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shoemaker R, Deng J, Wang W (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20:884–889

    Google Scholar 

  16. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245

    Google Scholar 

  17. Zhao Z, Zhang F (2006) Sequence context analysis in the mouse genome: single nucleotide polymorphisms and CpG island sequences. Genomics 87(1):68–74

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Z, Zhang F (2006) Sequence context analysis of 8.2 million single nucleotide polymorphisms in the human genome. Gene 366(2):316–324

    Article  CAS  PubMed  Google Scholar 

  19. Xie H, Wang M, Bischof J, Bonaldo Mde F, Soares MB (2009) SNP-based prediction of the human germ cell methylation landscape. Genomics 93(5):434–440

    Article  CAS  PubMed  Google Scholar 

  20. Derya Ubeyli E (2008) Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput Biol Med 38(1):14–22

    Article  PubMed  Google Scholar 

  21. Keerthi SS, Lin CJ (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15(7):1667–1689

    Article  PubMed  Google Scholar 

  22. Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25(3):106–110

    Article  CAS  PubMed  Google Scholar 

  23. Laskowski RA, Thornton JM (2008) Understanding the molecular machinery of genetics through 3D structures. Nat Rev Genet 9(2):141–151

    Article  CAS  PubMed  Google Scholar 

  24. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. URL: http://www.ensembl.org/. Access on 17 May 2011

  26. URL: http://snpper.chip.org/. Access on 17 May 2011

  27. Riva A, Kohane IS (2004) A SNP-centric database for the investigation of the human genome. BMC Bioinform 5:33

    Article  Google Scholar 

  28. Wheeler DL, Church DM, Lash AE, Leipe DD, Madden TL, Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner L, Rapp BA (2001) Database resources of the national center for biotechnology information. Nucleic Acids Res 29(1):11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hammond MP, Birney E (2004) Genome information resources—developments at Ensembl. Trends Genet 20(6):268–272

    Article  CAS  PubMed  Google Scholar 

  30. Karchin R, Diekhans M, Kelly L, Thomas DJ, Pieper U, Eswar N, Haussler D, Sali A (2005) LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21(12):2814–2820

    Article  CAS  PubMed  Google Scholar 

  31. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166

    Article  Google Scholar 

  32. Singh A, Olowoyeye A, Baenziger PH, Dantzer J, Kann MG, Radivojac P, Heiland R, Mooney SD (2008) MutDB: update on development of tools for the biochemical analysis of genetic variation. Nucleic Acids Res 36(Database issue):D815–D819

    Google Scholar 

  33. Jegga AG, Gowrisankar S, Chen J, Aronow BJ (2007) PolyDoms: a whole genome database for the identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic Acids Res 35(Database issue):D700–D706

    Google Scholar 

  34. Pieper U, Eswar N, Webb BM, Eramian D, Kelly L, Barkan DT, Carter H, Mankoo P, Karchin R, Marti-Renom MA, Davis FP, Sali A (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 37(Database issue):D347–D354

    Google Scholar 

  35. Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422(6934):835–847

    Article  CAS  PubMed  Google Scholar 

  36. Timofeeva MN, Kropp S, Sauter W, Beckmann L, Rosenberger A, Illig T, Jager B, Mittelstrass K, Dienemann H, Bartsch H, Bickeboller H, Chang-Claude JC, Risch A, Wichmann HE (2009) CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences. Carcinogenesis 30(7):1161–1169

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Bezemer ID, Rowland CM, Tong CH, Arellano AR, Catanese JJ, Devlin JJ, Reitsma PH, Bare LA, Rosendaal FR (2009) Genetic variants associated with deep vein thrombosis: the F11 locus. J Thromb Haemost 7(11):1802–1808

    Article  CAS  PubMed  Google Scholar 

  38. Konstantou J, Ioannou PC, Christopoulos TK (2007) Genotyping of single nucleotide polymorphisms by primer extension reaction and a dual-analyte bio/chemiluminometric assay. Anal Bioanal Chem 388(8):1747–1754

    Article  CAS  PubMed  Google Scholar 

  39. Bickeboller H, Goddard KA, Igo RP Jr, Kraft P, Lozano JP, Pankratz N, Balavarca Y, Bardel C, Charoen P, Croiseau P, Guo CY, Joo J, Kohler K, Madsen A, Malzahn D, Monsees G, Sohns M, Ye Z (2007) Issues in association mapping with high-density SNP data and diverse family structures. Genet Epidemiol 31(Suppl 1):S22–S33

    Article  PubMed  Google Scholar 

  40. Bowie JU, Reidhaar-Olson JF, Lim WA, Sauer RT (1990) Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247(4948):1306–1310

    Article  CAS  PubMed  Google Scholar 

  41. Chasman D, Adams RM (2001) Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol 307(2):683–706

    Article  CAS  PubMed  Google Scholar 

  42. Pirooznia M, Yang JY, Yang MQ, Deng Y (2008) A comparative study of different machine learning methods on microarray gene expression data. BMC Genom 9(Suppl 1):S13

    Article  Google Scholar 

  43. Krishnan VG, Westhead DR (2003) A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function. Bioinformatics 19(17):2199–2209

    Article  CAS  PubMed  Google Scholar 

  44. Care MA, Needham CJ, Bulpitt AJ, Westhead DR (2007) Deleterious SNP prediction: be mindful of your training data! Bioinformatics 23(6):664–672

    Article  CAS  PubMed  Google Scholar 

  45. Saunders CT, Baker D (2002) Evaluation of structural and evolutionary contributions to deleterious mutation prediction. J Mol Biol 322(4):891–901

    Article  CAS  PubMed  Google Scholar 

  46. Cai Z, Tsung EF, Marinescu VD, Ramoni MF, Riva A, Kohane IS (2004) Bayesian approach to discovering pathogenic SNPs in conserved protein domains. Hum Mutat 24(2):178–184

    Article  CAS  PubMed  Google Scholar 

  47. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11(5):863–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21(14):3176–3178

    Article  CAS  PubMed  Google Scholar 

  49. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sunyaev S, Ramensky V, Koch I, Lathe 3rd W, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10(6):591–597

    Google Scholar 

  51. Huang T, Wang P, Ye ZQ, Xu H, He Z, Feng KY, Hu L, Cui W, Wang K, Dong X, Xie L, Kong X, Cai YD, Li Y (2010) Prediction of deleterious non-synonymous SNPs based on protein interaction network and hybrid properties. PLoS ONE 5(7):e11900

    Article  PubMed Central  PubMed  Google Scholar 

  52. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22(3):231–238

    Article  CAS  PubMed  Google Scholar 

  53. Li S, Xi L, Li J, Wang C, Lei B, Shen Y, Liu H, Yao X, Li B (2011) In silico prediction of deleterious single amino acid polymorphisms from amino acid sequence. J Comput Chem 32(7):1211–1216

    Google Scholar 

  54. Herrgard S, Cammer SA, Hoffman BT, Knutson S, Gallina M, Speir JA, Fetrow JS, Baxter SM (2003) Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors. Proteins 53(4):806–816

    Article  CAS  PubMed  Google Scholar 

  55. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhu Y, Spitz MR, Amos CI, Lin J, Schabath MB, Wu X (2004) An evolutionary perspective on single-nucleotide polymorphism screening in molecular cancer epidemiology. Cancer Res 64(6):2251–2257

    Article  CAS  PubMed  Google Scholar 

  57. Sunyaev S, Ramensky V, Bork P (2000) Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 16(5):198–200

    Article  CAS  PubMed  Google Scholar 

  58. Cai Z, Tsung EF, Marinescu VD, Ramoni MF, Riva A, Kohane IS (2004) Bayesian approach to discovering pathogenic SNPs in conserved protein domains. Hum Mutat 24(2):178–184

    Article  CAS  PubMed  Google Scholar 

  59. Liu YH, Li CG, Zhou SF (2009) Prediction of deleterious functional effects of non-synonymous single nucleotide polymorphisms in human nuclear receptor genes using a bioinformatics approach. Drug Metab Lett 3(4):242–286

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17(4):263–270

    Article  PubMed  Google Scholar 

  61. Ye ZQ, Zhao SQ, Gao G, Liu XQ, Langlois RE, Lu H, Wei L (2007) Finding new structural and sequence attributes to predict possible disease association of single amino acid polymorphism (SAP). Bioinformatics 23(12):1444–1450

    Article  CAS  PubMed  Google Scholar 

  62. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tian J, Wu N, Guo X, Guo J, Zhang J, Fan Y (2007) Predicting the phenotypic effects of non-synonymous single nucleotide polymorphisms based on support vector machines. BMC Bioinform 8:450

    Article  Google Scholar 

  64. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33(Database issue):D284–D288

    Google Scholar 

  65. Santoro A, Cannella S, Trizzino A, Bruno G, De Fusco C, Notarangelo LD, Pende D, Griffiths GM, Arico M (2008) Mutations affecting mRNA splicing are the most common molecular defect in patients with familial hemophagocytic lymphohistiocytosis type 3. Haematologica 93(7):1086–1090

    Article  CAS  PubMed  Google Scholar 

  66. Defesche JC, Schuurman EJ, Klaaijsen LN, Khoo KL, Wiegman A, Stalenhoef AF (2008) Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing. Clin Genet 73(6):573–578

    Article  CAS  PubMed  Google Scholar 

  67. Ars E, Serra E, Garcia J, Kruyer H, Gaona A, Lazaro C, Estivill X (2000) Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 9(2):237–247

    Article  CAS  PubMed  Google Scholar 

  68. Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8(10):749–761

    Article  CAS  PubMed  Google Scholar 

  69. Orban TI, Olah E (2001) Purifying selection on silent sites—a constraint from splicing regulation? Trends Genet 17(5):252–253

    Article  CAS  PubMed  Google Scholar 

  70. Liu HX, Cartegni L, Zhang MQ, Krainer AR (2001) A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27(1):55–58

    Article  CAS  PubMed  Google Scholar 

  71. Fackenthal JD, Cartegni L, Krainer AR, Olopade OI (2002) BRCA2 T2722R is a deleterious allele that causes exon skipping. Am J Hum Genet 71(3):625–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Fairbrother WG, Holste D, Burge CB, Sharp PA (2004) Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol 2(9):E268

    Article  PubMed Central  PubMed  Google Scholar 

  73. Freimuth RR, Stormo GD, McLeod HL (2005) PolyMAPr: programs for polymorphism database mining, annotation, and functional analysis. Hum Mutat 25(2):110–117

    Article  CAS  PubMed  Google Scholar 

  74. Conde L, Vaquerizas JM, Santoyo J, Al-Shahrour F, Ruiz-Llorente S, Robledo M, Dopazo J (2004) PupaSNP finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Res 32(Web Server issue):W242–W248

    Google Scholar 

  75. Wang P, Dai M, Xuan W, McEachin RC, Jackson AU, Scott LJ, Athey B, Watson SJ, Meng F (2006) SNP Function Portal: a web database for exploring the function implication of SNP alleles. Bioinformatics 22(14):e523–e529

    Article  CAS  PubMed  Google Scholar 

  76. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15(16):2490–2508

    Article  CAS  PubMed  Google Scholar 

  77. Pyle AM (2010) The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 45(3):215–232

    Google Scholar 

  78. Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4(6):823–831

    Article  CAS  PubMed  Google Scholar 

  79. Sonenberg N (1994) mRNA translation: influence of the 5’ and 3’ untranslated regions. Curr Opin Genet Dev 4(2):310–315

    Article  CAS  PubMed  Google Scholar 

  80. Cowles CR, Hirschhorn JN, Altshuler D, Lander ES (2002) Detection of regulatory variation in mouse genes. Nat Genet 32(3):432–437

    Article  CAS  PubMed  Google Scholar 

  81. Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430(6995):85–88

    Article  CAS  PubMed  Google Scholar 

  82. Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, Buckland PR, O’Donovan MC (2003) Functional analysis of human promoter polymorphisms. Hum Mol Genet 12(18):2249–2254

    Article  CAS  PubMed  Google Scholar 

  83. Li C, Wu W, Liu J, Qian L, Li A, Yang K, Wei Q, Zhou J, Zhang Z (2006) Functional polymorphisms in the promoter regions of the FAS and FAS ligand genes and risk of bladder cancer in south China: a case-control analysis. Pharmacogenet Genomics 16(4):245–251

    Article  CAS  PubMed  Google Scholar 

  84. Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC, Buckland PR (2004) Functional analysis of polymorphisms in the promoter regions of genes on 22q11. Hum Mutat 24(1):35–42

    Article  CAS  PubMed  Google Scholar 

  85. Buckland PR, Coleman SL, Hoogendoorn B, Guy C, Smith SK, O’Donovan MC (2004) A high proportion of chromosome 21 promoter polymorphisms influence transcriptional activity. Gene Expr 11(5–6):233–239

    PubMed  Google Scholar 

  86. Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32(Web Server issue): W249–W252

    Google Scholar 

  87. URL: http://www.phylofoot.org/consite/. Access on 17 May 2011

  88. URL: http://pupasnp.bioinfo.cnio.es/. Access on 17 May 2011

  89. Ponomarenko JV, Merkulova TI, Orlova GV, Fokin ON, Gorshkova EV, Frolov AS, Valuev VP, Ponomarenko MP (2003) rSNP_Guide, a database system for analysis of transcription factor binding to DNA with variations: application to genome annotation. Nucleic Acids Res 31(1):118–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. URL: http://www.mgs.bionet.nsc.ru/mgs/systems/rsnp/. Accessed on 17 May 2011

  91. Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35(1):57–64

    Article  CAS  PubMed  Google Scholar 

  92. Li J, Yuan Z, Zhang Z (2010) Revisiting the contribution of cis-elements to expression divergence between duplicated genes: the role of chromatin structure. Mol Biol Evol 27(7):1461–1466

    Google Scholar 

  93. Doniger SW, Fay JC (2007) Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3(5):e99

    Article  PubMed Central  PubMed  Google Scholar 

  94. Tirosh I, Reikhav S, Sigal N, Assia Y, Barkai N (2010) Chromatin regulators as capacitors of interspecies variations in gene expression. Mol Syst Biol 6:435

    Google Scholar 

  95. Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451(7178):535–540

    Article  CAS  PubMed  Google Scholar 

  96. Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28(1):352–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Sherry ST, Ward M, Sirotkin K (1999) dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 9(8):677–679

    CAS  PubMed  Google Scholar 

  98. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009) Ensembl 2009. Nucleic Acids Res 37(Database issue):D690–D697

    Google Scholar 

  99. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D and Kent WJ (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39(Database issue):D876–D882

    Google Scholar 

  100. Hirakawa M, Tanaka T, Hashimoto Y, Kuroda M, Takagi T, Nakamura Y (2002) JSNP: a database of common gene variations in the Japanese population. Nucleic Acids Res 30(1):158–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Fredman D, Munns G, Rios D, Sjoholm F, Siegfried M, Lenhard B, Lehvaslaiho H, Brookes AJ (2004) HGVbase: a curated resource describing human DNA variation and phenotype relationships. Nucleic Acids Res 32(Database issue):D516–D519

    Google Scholar 

  102. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6):577–581

    Article  CAS  PubMed  Google Scholar 

  103. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T, Buetow KH (2000) Expression-based genetic/physical maps of single-nucleotide polymorphisms identified by the cancer genome anatomy project. Genome Res 10(8):1259–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Riva A, Kohane IS (2002) SNPper: retrieval and analysis of human SNPs. Bioinformatics 18(12):1681–1685

    Article  CAS  PubMed  Google Scholar 

  106. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611–1618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Staats B, Qi L, Beerman M, Sicotte H, Burdett LA, Packer B, Chanock SJ, Yeager M (2005) Genewindow: an interactive tool for visualization of genomic variation. Nat Genet 37(2):109–110

    Article  CAS  PubMed  Google Scholar 

  108. Ryan M, Diekhans M, Lien S, Liu Y, Karchin R (2009) LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures. Bioinformatics 25(11):1431–1432

    Article  CAS  PubMed  Google Scholar 

  109. Mooney SD, Altman RB (2003) MutDB: annotating human variation with functionally relevant data. Bioinformatics 19(14):1858–1860

    Article  CAS  PubMed  Google Scholar 

  110. Zhao T, Chang LW, McLeod HL, Stormo GD (2004) PromoLign: a database for upstream region analysis and SNPs. Hum Mutat 23(6):534–539

    Article  CAS  PubMed  Google Scholar 

  111. Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Schymkowitz J, Dopazo J (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34(Web Server issue):W621–W625

    Google Scholar 

  112. Kim BC, Kim WY, Park D, Chung WH, Shin KS, Bhak J (2008) SNP@Promoter: a database of human SNPs (single nucleotide polymorphisms) within the putative promoter regions. BMC Bioinform 9(Suppl 1):S2

    Article  Google Scholar 

  113. Yue P, Moult J (2006) Identification and analysis of deleterious human SNPs. J Mol Biol 356(5):1263–1274

    Article  CAS  PubMed  Google Scholar 

  114. Reumers J, Schymkowitz J, Ferkinghoff-Borg J, Stricher F, Serrano L, Rousseau F (2005) SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res 33(Database issue):D527–D532

    Google Scholar 

  115. Conde L, Vaquerizas JM, Ferrer-Costa C, de la Cruz X, Orozco M, Dopazo J (2005) PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes. Nucleic Acids Res 33(Web Server issue):W501–W55

    Google Scholar 

  116. Xu H, Gregory SG, Hauser ER, Stenger JE, Pericak-Vance MA, Vance JM, Zuchner S, Hauser MA (2005) SNPselector: a web tool for selecting SNPs for genetic association studies. Bioinformatics 21(22):4181–4186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Hemminger BM, Saelim B, Sullivan PF (2006) TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits. Bioinformatics 22(5):626–627

    Article  CAS  PubMed  Google Scholar 

  118. Chang H, Fujita T (2001) PicSNP: a browsable catalog of nonsynonymous single nucleotide polymorphisms in the human genome. Biochem Biophys Res Commun 287(1):288–291

    Article  CAS  PubMed  Google Scholar 

  119. Stitziel NO, Binkowski TA, Tseng YY, Kasif S, Liang J (2004) topoSNP: a topographic database of non-synonymous single nucleotide polymorphisms with and without known disease association. Nucleic Acids Res 32(Database issue):D520–D522

    Google Scholar 

  120. Taylor NE, Greene EA (2003) PARSESNP: A tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res 31(13):3808–3811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32(Web Server issue):W187–W190

    Google Scholar 

  123. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10(4):577–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA : visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16(11):1046–1047

    Article  CAS  PubMed  Google Scholar 

  125. Ovcharenko I, Nobrega MA, Loots GG, Stubbs L (2004) ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32(Web Server issue):W280–W286

    Google Scholar 

  126. Loots GG, Ovcharenko I (2004) rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res 32(Web Server issue):W217–W221

    Google Scholar 

  127. Marinescu VD, Kohane IS, Riva A (2005) MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinform 6:79

    Article  Google Scholar 

  128. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E (2003) MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31(13):3576–3579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(Web Server issue):W20–W25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, L., Wei, D. (2015). Bioinformatics Tools for Discovery and Functional Analysis of Single Nucleotide Polymorphisms. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_17

Download citation

Publish with us

Policies and ethics