Skip to main content

Prediction of Serine/Threonine Phosphorylation Sites in Bacteria Proteins

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

As a critical post-translational modification, phosphorylation plays important roles in regulating various biological processes, while recent studies suggest that phosphorylation in bacteria is also critical for functional signaling transduction. Since identification of phosphorylation substrates and sites is fundamental for understanding the phosphorylation mediated regulatory mechanism, a number of studies have been contributed to this area. Since experimental identification of phosphorylation sites is time-consuming and labor-intensive, computational predictions attract much attention for its convenience to provide helpful information. However, although there are a large number of computational studies in eukaryotes, predictions in bacteria are still rare. In this study, we present a new predictor of cPhosBac to predict phosphorylation serine/threonine in bacteria proteins. The predictor is developed with CKSAAP algorithm, which was combined with motif length selection to optimize the prediction, which achieves promising performance. The online service of cPhosBac is available at: http://netalign.ustc.edu.cn/cphosbac/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raju TN (2000) The nobel chronicles 1992: Fischer EH (b 1920), Krebs EG (b 1918). Lancet, 355:2004

    Google Scholar 

  2. Hunter T (2009) Tyrosine phosphorylation: 30 years and counting. Curr Opin Cell Biol 21:140–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Johnson LN (2009) The regulation of protein phosphorylation. Biochem Soc Trans 37:627–641

    Article  CAS  PubMed  Google Scholar 

  4. Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290

    Article  CAS  PubMed  Google Scholar 

  5. Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I (2013) Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 346(1):11–19

    Article  CAS  PubMed  Google Scholar 

  6. Cozzone AJ (1988) Protein-phosphorylation in prokaryotes. Annu Rev Microbiol 42:97–125

    Article  CAS  PubMed  Google Scholar 

  7. Ohlsen K, Donat S (2010) The impact of serine/threonine phosphorylation in staphylococcus aureus. Int J Med Microbiol 300:137–141

    Article  CAS  PubMed  Google Scholar 

  8. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    Article  CAS  PubMed  Google Scholar 

  10. Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J et al (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol cell proteomics: MCP 11:1070–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  PubMed  Google Scholar 

  12. Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M (2008) Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol cell proteomics: MCP 7:299–307

    Article  CAS  PubMed  Google Scholar 

  13. Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium bacillus subtilis. Mol cell proteomics: MCP 6:697–707

    Article  CAS  PubMed  Google Scholar 

  14. Ren J, Gao X, Liu Z, Cao J, Ma Q, Xue Y (2011) Computational analysis of phosphoproteomics: progresses and perspectives. Curr Protein Pept Sci 12:591–601

    Article  CAS  PubMed  Google Scholar 

  15. Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, Yao X, Ren J (2010) A summary of computational resources for protein phosphorylation. Curr Protein Pept Sci 11:485–496

    Article  CAS  PubMed  Google Scholar 

  16. Miller ML, Soufi B, Jers C, Blom N, Macek B, Mijakovic I (2009) NetPhosBac—a predictor for Ser/Thr phosphorylation sites in bacterial proteins. Proteomics 9:116–125

    Article  CAS  PubMed  Google Scholar 

  17. Chen K, Jiang Y, Du L, Kurgan L (2009) Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J Comput Chem 30:163–172

    Article  PubMed  Google Scholar 

  18. Chen K, Kurgan LA, Ruan J (2007) Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Struct Biol 7:25

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chen YZ, Tang YR, Sheng ZY, Zhang Z (2008) Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC Bioinformatics 9:101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang Z (2011) Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS ONE 6:e22930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen Z, Zhou Y, Song J (1834) Zhang Z (2013) hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta 8:1461–1467

    Google Scholar 

  22. Vacic V, Iakoucheva LM, Radivojac P (2006) Two sample logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics 22:1536–1537

    Article  CAS  PubMed  Google Scholar 

  23. Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel 24:255–260

    Article  CAS  PubMed  Google Scholar 

  24. He Z, Yang C, Guo G, Li N, Yu W (2011) Motif-All: discovering all phosphorylation motifs. BMC Bioinformatics 12(Suppl 1):S22

    Article  PubMed Central  PubMed  Google Scholar 

  25. Team RC (2012) R: a Language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

    Google Scholar 

Download references

Acknowledgments

This work was supported, in whole or in part, by Provincial Key Research Program of Universities in Anhui (KJ2012A063), Innovation Foundation of USTC for Young Scientists (WK2070000028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zexian Liu or Wei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, Z., Wu, P., Zhao, Y., Liu, Z., Zhao, W. (2015). Prediction of Serine/Threonine Phosphorylation Sites in Bacteria Proteins. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_16

Download citation

Publish with us

Policies and ethics