Analysis of Bio-nanoparticles by Means of Nano ES in Combination with DMA and PDMA: Intact Viruses, Virus-Like-Particles and Vaccine Particles

  • Guenter AllmaierEmail author
  • Victor U. Weiss
  • Marlene Havlik
  • Peter Kallinger
  • Martina Marchetti-Deschmann
  • Wladyslaw W. Szymanski
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


For characterization of whole viruses, vaccine particles and virus-like-particles (VLPs) besides immunological and functional parameters usually methods as electron microscopy (EM), liquid phase separation or light scattering techniques are applied. The use of nano electrospraying (nano ES) to transfer such bio-nanoparticles (NP) from the liquid phase into the gas phase and ionization is a relative new development, i.e. to bring such kind of nano-objects as intact species into the gas-phase at atmospheric pressure. Now it is possible to generate ions with multiple charges as well as a single charge fixed on such spherical bio-NPs.

Here, we want to present two techniques which open up new avenues of analysis of intact viruses, VLPs and vaccine particles. Namely, a nano electrospray (nano ES) source with a charge manipulation (reduction) device is coupled to a separation device called differential mobility analyzer (DMA) followed by a detection system (either a condensation particle counter or Faraday cup). Two types of separation devices either a single DMA (gas-phase electrophoretic mobility macromolecular analyzer, GEMMA) or two in parallel used DMAs (PDMA) will be described and discussed. The size-separated bio-NPs are transferred in most cases then into the universal detector CPC (condensation particle counter). The other very interesting part of both instruments is the possibility to collect size-separated bio-NPs for subsequent further characterization as image generation by means of atomic force microscopy (AFM) or immunological evaluation by means of DotBlot via a specific antibody. Both devices will be compared and their development will be described. Both systems are allowing the handling of bio-NPs from 2.5 to several hundred nm and are measuring number concentrations. The characterization by means of nano ES GEMMA with sample collection after DMA separation and nano ES PDMA of intact viruses – human rhinovirus (HRV serotype 2; so-called “common cold” virus), of inactivated viruses – tick-borne encephalitis virus (TBEV) vaccines and of VLPs will be shown.


Bio-nanoparticles Viruses VLP Vaccines Size determination DMA GEMMA MacroIMS PDMA Particle collections AFM EM Immuno detection 



The work regarding the PDMA was supported by grant of the Austrian Science Foundation (TRP29-N20 to W.W.S and G.A.). Furthermore we appreciate for making the following samples available – the hepatitis B virus capsid (A. Heck), TBEV vaccine (C. Tauer) and HRV2 (D. Blaas). The authors express their thanks for the AFM picture of the sample to G. Friedbacher and E. Eitenberger.


  1. 1.
    De la Mora JF, de Juan L, Eichler T, Rosell J (1998) Differential mobility analysis of molecular ions and nanometer particles. Trends Anal Chem 17(6):328–339. doi: 10.1016/S0165-9936(98)00039-9 CrossRefGoogle Scholar
  2. 2.
    Steiner G, Attoui M, Wimmer D, Reischl GP (2010) A medium flow, high-resolution Vienna DMA running in recirculating mode. Aerosol Sci Tech 44(4):308–315CrossRefGoogle Scholar
  3. 3.
    Chen D-R, Pui DYH, Hummes D, Fissan H, Quant FR, Sem GJ (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J Aerosol Sci 29(5–6):497–509. doi: 10.1016/S0021-8502(97)10018-0 CrossRefGoogle Scholar
  4. 4.
    Chen D-R, Pui DYH (1997) Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements. J Aerosol Sci 28(6):985–1004. doi: 10.1016/S0021-8502(97)00004-9 CrossRefGoogle Scholar
  5. 5.
    Allmaier G, Laschober C, Szymanski WW (2008) Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles – protein complexes, lipoparticles, and viruses. J Am Soc Mass Spectrom 19(8):1062–1068. doi: 10.1016/j.jasms.2008.05.017 CrossRefGoogle Scholar
  6. 6.
    Bacher G, Szymanski WW, Kaufman SL, Zöllner P, Blaas D, Allmaier G (2001) Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spectrom 36(9):1038–1052. doi: 10.1002/jms.208 CrossRefGoogle Scholar
  7. 7.
    Loo JA, Berhane B, Kaddis CS, Wooding KM, Xie Y, Kaufman SL, Chernushevich IV (2005) Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J Am Soc Mass Spectrom 16(7):998–1008. doi: 10.1016/j.jasms.2005.02.017 CrossRefGoogle Scholar
  8. 8.
    Knutson EO, Whitby KT (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451. doi: 10.1016/0021-8502(75)90060-9 CrossRefGoogle Scholar
  9. 9.
    Collins DR, Nenes A, Flagan RC, Seinfeld JH (2000) The scanning flow DMA. J Aerosol Sci 31(10):1129–1144. doi: 10.1016/S0021-8502(99)00576-5 CrossRefGoogle Scholar
  10. 10.
    Kallinger P, Steiner G, Szymanski WW (2012) Characterization of four different bipolar charging devices for nanoparticle charge conditioning. J Nanopart Res 14(6). doi: 10.1007/s11051-012-0944-z
  11. 11.
    Laschober C, Kaddis CS, Reischl GP, Loo JA, Allmaier G, Szymanski WW (2007) Comparison of various nano-differential mobility analysers (nDMAs) applying globular proteins. J Exp Nanosci 2(4):291–301. doi: 10.1080/17458080701660550 CrossRefGoogle Scholar
  12. 12.
    Fuchs NA (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofisica Pura e Applicata 56:185–193. doi: 10.1007/BF01993343 CrossRefGoogle Scholar
  13. 13.
    Wick CH, McCubbin PE (1999) Characterization of purified MS2 bacteriophage by the physical counting methodology used in the integrated virus detection system (IVDS). Toxicological Methods 9(4):245–252. doi: 10.1080/105172399242591 CrossRefGoogle Scholar
  14. 14.
    Verdaguer N, Blaas D, Fita I (2000) Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300(5):1179–1194. doi: 10.1006/jmbi.2000.3943 CrossRefGoogle Scholar
  15. 15.
    Zhao L, Seth A, Wibowo N, Zhao C-Z, Mitter N, Yu C, Middelberg APJ (2014) Nanoparticle vaccines. Vaccine 32:327–337. doi: 10.1016/j.vaccine.2013.11.069 CrossRefGoogle Scholar
  16. 16.
    Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira JC, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5(7):5729–5745. doi: 10.1021/nn201397z CrossRefGoogle Scholar
  17. 17.
    Heck AJR (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933. doi: 10.1038/nmeth.1265 CrossRefGoogle Scholar
  18. 18.
    Bereszczak JZ, Havlik M, Weiss VU, Marchetti-Deschmann M, van Duijn E, Watts NR, Wingfield PT, Allmaier G, Steven AC, Heck AJR (2014) Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry: morphology selective binding of Fabs to hepatitis B virus capsids. Anal Bioanal Chem 406(5):1437–1446. doi: 10.1007/s00216-013-7548-z CrossRefGoogle Scholar
  19. 19.
    Havlik M, Marchetti-Deschmann M, Friedbacher G, Messner P, Winkler W, Perez-Burgos L, Tauer C, Allmaier G (2014) Development of a bio-analytical strategy for characterization of vaccine particles combining SEC and nano ES GEMMA. Analyst 139:1412–1419. doi: 10.1039/C3AN1962D CrossRefGoogle Scholar
  20. 20.
    Pease LF (2012) Physical analysis of virus particles using electrospray differential mobility analysis. Trends Biotechnol 30(4):216–224. doi: 10.1016/j.tibtech.2011.11.004 CrossRefGoogle Scholar
  21. 21.
    Seyfried BK, Siekmann J, Turecek PL, Schwarz HP, Scheiflinger F, Zappe H, Bossard ML et al (2011) PEGylated recombinant von Willebrand factor analyzed by means of MALDI-TOF-MS, CGE-on-a-chip and nES-GEMMA. Int J Mass Spectrom 305(2–3):157–163. doi: 10.1016/j.ijms.2010.10.028 CrossRefGoogle Scholar
  22. 22.
    Weiss VU, Subirats X, Pickl-Herk A, Bilek G, Winkler W, Kumar M, Allmaier G et al (2012) Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas-phase electrophoretic mobility molecular analysis: Part I. Electrophoresis 33(12):1833–1841. doi: 10.1002/elps.201100647 CrossRefGoogle Scholar
  23. 23.
    Fuchs R, Blaas D (2010) Uncoating of human rhinoviruses. Rev Med Virol 20(5):281–297. doi: 10.1002/rmv.654 CrossRefGoogle Scholar
  24. 24.
    Kallinger P, Weiss VU, Lehner A, Allmaier G, Szymanski WW (2013) Analysis and handling of bio-nanoparticles and environmental nanoparticles using electrostatic aerosol mobility. Particuology 11(1):14–19. doi: 10.1016/j.partic.2012.09.004 CrossRefGoogle Scholar
  25. 25.
    Laschober C, Wruss J, Blaas D, Szymanski WW, Allmaier G (2008) Gas-phase electrophoretic molecular mobility analysis of size and stoichiometry of complexes of a common cold virus with antibody and soluble receptor molecules. Anal Chem 80(6):2261–2264. doi: 10.1021/ac702463z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Guenter Allmaier
    • 1
    Email author
  • Victor U. Weiss
    • 1
  • Marlene Havlik
    • 1
  • Peter Kallinger
    • 2
  • Martina Marchetti-Deschmann
    • 1
  • Wladyslaw W. Szymanski
    • 2
  1. 1.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations