Advertisement

Submerged Fermentation of Medicinal Fungus Cordyceps sinensis for Production of Biologically Active Mycelial Biomass and Exopolysaccharides

  • Jing-Kun Yan
  • Jian-Yong WuEmail author
Chapter

Abstract

Cordyceps (Ophiocordyceps) sinensis, the Chinese caterpillar fungus or Cordyceps in brief, is an important medicinal fungus in Chinese herbal medicine with a wide range of health benefits and bioactivities. Because wild C. sinensis fungus (in the form of insect caterpillar-fungal fruiting body complex) is very expensive and rare in nature, mycelial fermentation has become the main source of C. sinensis fungal materials. Liquid or submerged fermentation of fungal mycelia has been widely exploited for large-scale production of C. sinensis mycelium biomass and exopolysaccharides (EPS). This chapter will give a brief introduction of the biological characteristics of the C. sinensis fungus and its medicinal functions and applications, and then mainly review the conditions and characteristics of C. sinensis mycelial culture for the production of mycelial biomass and EPS in shake-flasks and stirred-tank fermenters. In addition to the relevant studies reported by other research groups, this chapter will summarize the major findings from the studies by our own group with the Cs-HK1 fungus, including the fluid transport properties and the process parameters from small laboratory to large-scale industrial fermenters, the problems in separation and recovery of mycelial biomass and EPS from the viscous fermentation liquid, and the isolation, purification and molecular properties of polysaccharides.

Keywords

Cordyceps sinensis Cs-HK1 fungus Mycelial culture Stirred-tank fermenters Exopolysaccharides Product recovery 

Abbreviations

Cs

Cordyceps sinensis

DO

Dissolved oxygen

EPS

Exopolysaccharide

MW

Molecular weight

MWCO

Molecular weight cut-off

PE

Peptone

PS

Polysaccharide

PSP

Polysaccharide-protein complex

TKN

Total Kjeldahl nitrogen

YE

Yeast extract

Notes

Acknowledgements

This work was supported by grants from the Hong Kong Government UGC (GRF Projects PolyU 5036/10P and PolyU 5033/11P) and The Hong Kong Polytechnic University.

References

  1. 1.
    Stachowiak B, Reguła J (2012) Health-promoting potential of edible macromycetes under special consideration of polysaccharides: a review. Eur Food Res Technol 234:369–380CrossRefGoogle Scholar
  2. 2.
    Ren L, Perera C, Hemar Y (2012) Antitumor activity of mushroom polysaccharides: a review. Food Funct 3:1118–1130PubMedCrossRefGoogle Scholar
  3. 3.
    Ooi VEC, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7:715–729PubMedCrossRefGoogle Scholar
  4. 4.
    Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274PubMedCrossRefGoogle Scholar
  5. 5.
    Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332PubMedCrossRefGoogle Scholar
  6. 6.
    Zhong JJ, Tang YJ (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng Biotechnol 87:25–59PubMedGoogle Scholar
  7. 7.
    Seviour R, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31:170–185PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang Y, Li E, Wang C, Li Y, Liu X (2012) Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycol 3:2–10Google Scholar
  9. 9.
    Chen PX, Wang S, Nie S, Marcone M (2013) Properties of Cordyceps sinensis: a review. J Funct Foods 5:550–569CrossRefGoogle Scholar
  10. 10.
    Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int J Med Mushrooms 10:219–234CrossRefGoogle Scholar
  11. 11.
    Shashidhar MG, Giridhar P, Sankar KU, Manohar B (2013) Bioactive principles from Cordyceps sinensis: a potent food supplement – a review. J Funct Foods 5:1013–1030CrossRefGoogle Scholar
  12. 12.
    Shrestha UB, Bawa KS (2013) Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biol Cons 159:514–520CrossRefGoogle Scholar
  13. 13.
    Zhu JS, Halpern GM, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. J Alter Comp Med 4:289–303 (Part I); 4: 429-457 (Part II)CrossRefGoogle Scholar
  14. 14.
    Li SP, Tsim KWK (2004) The biological and pharmacological properties of Cordyceps sinensis, a traditional Chinese medicine that has broad clinical applications. In: Packer L, Ong CN, Halliwell B (eds) Herbal and traditional medicine: molecular aspects of health. Marcel Dekker, New York, pp 657–683Google Scholar
  15. 15.
    Lo HC, Hsieh C, Lin FY, Hsu TH (2013) A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in Dong Chong Xia Cao and related bioactive ingredients. J Trad Comp Med 3:16–32Google Scholar
  16. 16.
    Kim HO, Yun JW (2005) A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol 99:728–738PubMedCrossRefGoogle Scholar
  17. 17.
    Cha SH, Lim JS, Yoon CS, Koh JH, Chang HI, Kim SW (2007) Production of mycelia and exo-biopolymer from molasses by Cordyceps sinensis 16 in submerged culture. Bioresour Technol 98:165–168PubMedCrossRefGoogle Scholar
  18. 18.
    Paterson RRM (2008) Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochem 69:1469–1495CrossRefGoogle Scholar
  19. 19.
    Winkler D (2010) Cordyceps sinensis – a previous parasitic fungus infecting Tibet. Field Mycol 11:60–67CrossRefGoogle Scholar
  20. 20.
    Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Lhosumtseiring N, Fu SZ, Dong CH, Zhan Y, Yao YJ (2011) A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol 49:913–919PubMedCrossRefGoogle Scholar
  21. 21.
    Yin DH, Tang XM (1995) Progresses of cultivation research of Cordyceps sinensis. China J Chin Mat Med 20:707–709Google Scholar
  22. 22.
    Jiang Y, Yao YJ (2002) Names related to Cordyceps sinensis anamorph. Mycotaxon 84:245–254Google Scholar
  23. 23.
    Li SP, Li P, Dong TTX, Tsim KWK (2001) Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electrophoresis 22:144–150PubMedCrossRefGoogle Scholar
  24. 24.
    Li SP, Su ZR, Dong TTX, Tsim KWK (2002) The fruiting body and its caterpillar host of Cordyceps sinensis show close resemblance in main constituents and anti-oxidation activity. Phytomedicine 9:319–324PubMedCrossRefGoogle Scholar
  25. 25.
    Hsu TH, Shiao LH, Hsieh C, Chang DM (2002) A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem 78:463–469CrossRefGoogle Scholar
  26. 26.
    Moore D (1998) Fungal morphogenesis. Cambridge University Press, New YorkCrossRefGoogle Scholar
  27. 27.
    Griffin DH (1994) Fungal physiology. Wiley-Liss, New YorkGoogle Scholar
  28. 28.
    Stanbury PF, Whitaker A, Hall SJ (1995) Principles of fermentation technology, 2nd edn. Pergamon, TarrytownGoogle Scholar
  29. 29.
    Hsieh CY, Tsai MJ, Hsu TH, Chang DM, Lo CT (2005) Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotech 120:145–157CrossRefGoogle Scholar
  30. 30.
    Dong CH, Yao YJ (2005) Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol 99:483–492PubMedCrossRefGoogle Scholar
  31. 31.
    Quan W, Wang J, Du S, Liu G (2007) Studies on the production of exopolysaccharides by liquid culture of Cordyceps sinensis. Fajiao Keji Tongxun 36:2–4 (in Chinese)Google Scholar
  32. 32.
    Lang J, Qi X, Hou Y, Zhao S, Jiang G (2009) Production of exopolysaccharides by Cordyceps sinensis in liquid culture. J Dalian Polytech Univ 28:107–110 (in Chinese)Google Scholar
  33. 33.
    Wu C, Chen Y, Hao Y (2009) Production of mycelia and polysaccharides by liquid fermentation of Cordyceps sinensis. Food Sci 30:171–174 (in Chinese)Google Scholar
  34. 34.
    Choi JW, Ra KS, Kim SY, Yoon TJ, Yu KW, Shin KS, Lee SP, Suh HJ (2010) Enhancement of anti-complementary and radical scavenging activities in the submerged culture of Cordyceps sinensis by addition of citrus peel. Bioresour Technol 101:6028–6034PubMedCrossRefGoogle Scholar
  35. 35.
    Wang XL, Liu GQ, Zhu CY, Kuang SM (2011) Enhanced production of mycelial biomass and extracellular polysaccharides in caterpillar-shaped medicinal mushroom Cordyceps sinensis CS001 by the addition of palmitic acid. J Med Plant Res 5:2873–2878Google Scholar
  36. 36.
    Park JP, Kim SW, Hwang HJ, Cho YJ, Yun HW (2002) Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enzyme Microb Tech 31:250–255CrossRefGoogle Scholar
  37. 37.
    Oh JY, Cho EJ, Nam SH, Choi JW, Yun JW (2007) Production of polysaccharide-peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. Process Biochem 42:352–362CrossRefGoogle Scholar
  38. 38.
    Mao XB, Zhong JJ (2006) Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb Tech 38:343–350CrossRefGoogle Scholar
  39. 39.
    Holliday J, Cleaver M (2004) On the trail of the yak ancient Cordyceps in the modern world. http://www.pharmaceuticalmushrooms.nwbotanicals.org/lexicon/cordyceps
  40. 40.
    Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531CrossRefGoogle Scholar
  41. 41.
    Xiao JH, Chen DX, Xiao Y, Liu JW, Kiu ZL, Wan WH, Fang N, Tan BB, Liang XQ, Liu AY (2004) Optimization of submerged culture conditions for mycelial polysaccharide production in Cordyceps pruinosa. Process Biochem 39:2241–2247CrossRefGoogle Scholar
  42. 42.
    Leung PH, Zhang QX, Wu JY (2006) Mycelium cultivation, chemical composition and antitumor activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. J Appl Microbiol 101:275–283PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang QX, Wu JY, Hu ZD, Li D (2004) Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci 75(24):2911–2919PubMedCrossRefGoogle Scholar
  44. 44.
    Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall PTR, Englewood CliffsGoogle Scholar
  45. 45.
    Sinha J, Bae JT, Park JP, Kim KH, Song CH, Yun JW (2001) Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl Microbiol Biotechnol 56:88–92PubMedCrossRefGoogle Scholar
  46. 46.
    Richard A, Margaritis A (2002) Production and mass transfer characteristics of non-Newtonian biopolymers for biomedical applications. Crit Rev Biotechnol 22:355–374PubMedCrossRefGoogle Scholar
  47. 47.
    Wu JY, Leung PH, Wang WQ, Xu CP (2014) Mycelial fermentation characteristics and anti-fatigue activities of a Cordyceps sinensis fungus Cs-HK1. Int J Med Mushrooms 16:105–114Google Scholar
  48. 48.
    Yan JK, Wang WQ, Wu JY (2014) Recent advances in Cordyceps sinensis polysaccharides: mycelial fermentation, isolation, structure, and bioactivities: a review. J Funct Foods 6:33–37Google Scholar
  49. 49.
    Nie SP, Cui SW, Xie M, Phillips AO, Phillips GO (2013) Bioactive polysaccharides from Cordyceps sinensis: isolation, structure features and bioactivities. Bioact Carbohyd Diet Fiber 1:38–52CrossRefGoogle Scholar
  50. 50.
    Xiao JH (2008) Current status and ponderation on preparations and chemical structures of polysaccharide in fungi of Cordyceps (Fr.) Link. Chin Tradit Herb Drugs 39:454–460Google Scholar
  51. 51.
    Zhao J, Xie J, Wang LY, Li SP (2013) Advanced development in chemical analysis of Cordyceps. J Pharmaceut Biomed Anal 87:271–289CrossRefGoogle Scholar
  52. 52.
    Zhong S, Pan HJ, Fan LF, Lv G, Wu Y, Parmeswaran B, Pandey A, Soccol CR (2009) Advances in research of polysaccharides in Cordyceps species. Food Technol Biotechnol 47:304–312Google Scholar
  53. 53.
    Huang QL, Siu KC, Wang WQ, Cheung YC, Wu JY (2013) Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem 48:380–386CrossRefGoogle Scholar
  54. 54.
    Cui SW (2005) Structural analysis of polysaccharides. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties and applications, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  55. 55.
    Nie SP, Xie MY (2011) A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll 25:144–149CrossRefGoogle Scholar
  56. 56.
    Zhang M, Cui S, Cheung P, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Tech 18:4–19CrossRefGoogle Scholar
  57. 57.
    Yan JK, Wang WQ, Li L, Wu JY (2011) Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr Polym 85:753–758CrossRefGoogle Scholar
  58. 58.
    Yan JK, Li L, Wang ZM, Wu JY (2010) Structural elucidation of an exopolysaccharide form mycelial fermentation of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Carbohydr Polym 79:125–130CrossRefGoogle Scholar
  59. 59.
    Wang ZM, Peng X, Lee KLD, Tang JC, Cheung PCK, Wu JY (2011) Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 125:637–643CrossRefGoogle Scholar
  60. 60.
    Chen S, Siu KC, Wang WQ, Liu XX, Wu JY (2013) Structure and antioxidant activity of a novel poly-N-acetylhexosamine produced by a medicinal fungus. Carbohydr Polym 94:332–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations