Folding and Unfolding Classical and Quantum Systems

  • José F. Cariñena
  • Alberto Ibort
  • Giuseppe Marmo
  • Giuseppe Morandi
Chapter

Abstract

Reduction procedures, the way we understand them today (i.e. in terms of Poisson reduction) can be traced back to Sophus Lie in terms of function groups, reciprocal function groups and indicial functions [Ei61, Fo59, Lie93, Mm85].

References

  1. [Ei61]
    Eisenhart, L.P.: Continuous Groups of Transformations. Dover, New York (1961)Google Scholar
  2. [Fo59]
    Forsyth, A.R.: Theory of Differential Equations. Dover, New York (1959)MATHGoogle Scholar
  3. [Lie93]
    Lie, S., Scheffers G.: Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Teubner, Leipzig (1893) (Edited and revised by G. Scheffers)Google Scholar
  4. [Mm85]
    Marmo, G., Saletan, E.J., Simoni, A., Vitale, B.: Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction. Wiley, Chichester (1985)MATHGoogle Scholar
  5. [Ma83]
    Marmo, G.: Function groups and reduction of Hamiltonian systems. Att. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. 117, 273–287 (1983)Google Scholar
  6. [Ho85]
    Howe, R.: Dual pairs in physics: harmonic oscillators, photons, electrons and singletons. Lect. Appl. Math. 21, 179–207 (1985)MathSciNetGoogle Scholar
  7. [Ch07]
    Chaturvedi, S., Ercolessi, E., Marmo, G., Mukunda, N., Simon, R.: Ray-space Riccati evolution and geometric phases for \(n\)-level quantum systems. Pramana J. Phys. 63, 317–327 (2007)CrossRefADSGoogle Scholar
  8. [OlPe81]
    Olshanetsky, M.A., Perelomov, A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys Rep. 71, 313–400 (1981)MathSciNetCrossRefADSGoogle Scholar
  9. [Ki76]
    Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  10. [Ki99]
    Kirillov, A.A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc. 36, 433–488 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. [La91]
    Landi, G., Marmo, G., Sparano, G., Vilasi, G.: A generalized reduction procedure for dynamical systems. Mod. Phys. Lett. A 6, 3445–3453 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  12. [Ma92]
    Man’ko, V.I., Marmo, G.: Generalized reduction procedure and nonlinear non stationary dynamical systems. Mod. Phys. Lett. A 7, 3411–3418 (1992)MathSciNetCrossRefMATHADSGoogle Scholar
  13. [Ca07b]
    Cariñena, J.F., Clemente-Gallardo, J., Marmo, G.: Reduction procedures in classical and quantum mechanics. Int. J. Mod. Phys. 4, 1363–1403 (2007)MATHGoogle Scholar
  14. [Ca09]
    Cariñena, J.F., Clemente-Gallardo, J., Marmo, G.: Towards a definition of quantum integrability. Int. J. Geom. Meth. Mod. Phys. 6, 129–172 (2009)CrossRefGoogle Scholar
  15. [Ca06]
    Cariñena, J.F., Gracia, X., Marmo, G., Martínez, E., Muñoz-Lecanda, M., Román-Roy, N.: Geometric Hamilton-Jacobi theory. Int. J. Geom. Meth. Phys. 3, 1417–1458 (2006)CrossRefMATHGoogle Scholar
  16. [Am26]
    Amaldi, U., Levi-Civita, T.: Lezioni di Meccanica Razionale. N. Zanichelli, Bologna (1926)MATHGoogle Scholar
  17. [Pa57]
    Palais, R.S.: A global formulation of the Lie theory of transitive groups. Mem. Am. Math. Soc. 22, 404 (1957)Google Scholar
  18. [Ma05]
    Marmo, G., Parasecoli, E., Tulczyjew, W.: Space-time orientations and Maxwell’s equations. Rep. Math. Phys. 56, 209–248 (2005)MathSciNetCrossRefMATHADSGoogle Scholar
  19. [Di31]
    Dirac, P.A.M.: Quantized singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133, 60–72 (1931)CrossRefADSGoogle Scholar
  20. [Po96]
    Poincaré, H.: Remarques sur une experience de M. Birkeland. Comp. Rend. Acad. Sci. 123, 530–533 (1896)Google Scholar
  21. [Ba80]
    Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Magnetic monopoles with no strings. Nucl. Phys. B 152, 385–396 (1980)MathSciNetCrossRefADSGoogle Scholar
  22. [Ba83]
    Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Gauge Symmetries and Fiber Bundles: Applications to Particle Dynamics, Lecture Notes in Physics, vol 188. Springer, New York (1983)Google Scholar
  23. [Ba91]
    Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Classical Topology and Quantum States. World Scientific, River Edge (1991)CrossRefMATHGoogle Scholar
  24. [La90]
    Landi, G., Marmo, G.: Algebraic Differential Calculus for Gauge Theories. Nucl. Phys. B (Proc.Suppl.) 18, 171–206 (1990)Google Scholar
  25. [Cu97]
    Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (1997)Google Scholar
  26. [Du80]
    Duistermaat, J.J.: On global action-angle variables. Commun. Pure Appl. Math. 33, 687–706 (1980)MathSciNetCrossRefMATHGoogle Scholar
  27. [Es04]
    Esposito, G., Marmo, G., Sudarshan, G.: From Classical to Quantum Mechanics: an introduction to the formalism. Cambridge University Press, Cambridge (2004)Google Scholar
  28. [Ca94]
    Cariñena, J.F., Ibort, L.A., Marmo, G., Perelomov, A.M.: The Geometry of Poisson manifolds and Lie algebras. J. Phys. A Math. Gen. 27, 7425–7449 (1994)CrossRefMATHADSGoogle Scholar
  29. [Al98]
    Aldaya, V., Guerrero, J., Marmo, G.: Quantization on a Lie group: higher order polarizations. In: Gruber, B., Ramek, M. (eds.) Symmetries in Science X. Plenum Press, New York (1998)Google Scholar
  30. [Av05]
    D’Avanzo, A., Marmo, G.: Reduction and unfolding: the Kepler problem. Int. J. Geom. Meth. Mod. Phys. 2, 83–109 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. [Zu93]
    Zhu, J.C., Klauder, J.R.: Classical symptoms of quantum illness. Am. J. Phys. 61, 605–611 (1993)MathSciNetCrossRefADSGoogle Scholar
  32. [Av05b]
    D’Avanzo, A., Marmo, G., Valentino, A.: Reduction and unfolding for quantum systems: the hydrogen atom. Int. J. Geom. Meth. Mod. Phys. 2, 1043–1062 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. [Fe06]
    Feher, L., Pusztai, B.G.: A class of Calogero type reductions of free motion on a simple Lie group. Lett. Math. Phys. 79, 263–277 (2007)MathSciNetCrossRefMATHADSGoogle Scholar
  34. [Fe07]
    Feher, L., Pusztai, B.G.: Hamiltonian reductions of free particles under polar actions of compact Lie groups. Theor. Math. Phys. 155, 646–658 (2008)Google Scholar
  35. [Fe08]
    Feher, L., Pusztai, B.G.: On the self-adjointness of certain reduced Laplace-Beltrami operators. Rep. Math. Phys. 61, 163–170 (2008)Google Scholar
  36. [Wo87]
    Woronowicz, S.L.: Twisted \({SU}(2)\) group: an example of a non-commutative differential calculus. Pub. Res. Inst. Math. Sci. 23, 117–181 (1987)MathSciNetCrossRefMATHGoogle Scholar
  37. [Gr94]
    Grabowski, J., Landi, G., Marmo, G., Vilasi, G.: Generalized reduction procedure: symplectic and Poisson formalisms. Forts. Phys. 42, 393–427 (1994)MathSciNetCrossRefGoogle Scholar
  38. [Li93]
    Lizzi, F., Marmo, G., Sparano, G., Vitale, P.: Dynamical aspects of Lie-Poisson structures. Mod. Phys. Lett. A 8, 2973–2987 (1993)MathSciNetCrossRefMATHADSGoogle Scholar
  39. [Lo97]
    López-Peña, R., Manko, V.I., Marmo, G.: Wigner problem for a precessing dipole. Phys. Rev. A 56, 1126–1130 (1997)CrossRefADSGoogle Scholar
  40. [We89a]
    Weinberg, S.: Precision tests of quantum mechanics. Phys. Rev. Lett. 62, 485–488 (1989)CrossRefADSGoogle Scholar
  41. [Ci90]
    Cirelli, R., Maniá, A., Pizzocchero, L.: Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure. Int. J. Math. 31, 2891–2897 (1990)Google Scholar
  42. [Ci901]
    Cirelli, R., Maniá, A., Pizzocchero, L.: Quantum mechanics as an infinite-dimensional hamiltonian system with uncertainty structure II. J. Math. Phys. 31, 2898–2903 (1990)Google Scholar
  43. [Ci91]
    Cirelli, R., Maniá, A., Pizzocchero, L.: Quantum phase-space formulation of Schrödinger mechanics. Int. J. Mod Phys A 6, 2133–2146 (1991)CrossRefADSGoogle Scholar
  44. [Ci94]
    Cirelli, R., Maniá, A., Pizzocchero, L.: A functional representation for non-commutative \(\mathbb{C}^*\)-algebras. Rev. Math. Phys. 6, 675–697 (1994)MathSciNetCrossRefMATHGoogle Scholar
  45. [Di58]
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958)MATHGoogle Scholar
  46. [Em84]
    Emch, G.G.: Mathematical and Conceptual Foundations of 20th Century Physics. North-Holland, Amsterdam (1984)MATHGoogle Scholar
  47. [La98]
    Landsman. N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York (1998)Google Scholar
  48. [Di45]
    Dirac, P.A.M.: On the analogy between classical and quantum mechanics. Rev. Mod. Phys. 17, 195–199 (1945)MathSciNetCrossRefMATHADSGoogle Scholar
  49. [Ch05]
    Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Wigner-Weyl correspondence in quantum mechanics for continuous and discrete time systems: a Dirac inspired view. J. Phys. A Math. Gen. 39, 1405–1423 (2005)MathSciNetCrossRefADSGoogle Scholar
  50. [Gr02]
    Gracia-Bondia, J.M., Lizzi, F., Marmo, G., Vitale, P.: Infinitely many star products to play with. J. High Energy Phys. 4, 025 (2002)MathSciNetGoogle Scholar
  51. [Ma06]
    Marmo, G., Vitale, P., Zampini, A.: Noncommutative differential calculus for Moyal subalgebras. J. Geom. Phys. 55, 611–622 (2006)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José F. Cariñena
    • 1
  • Alberto Ibort
    • 2
  • Giuseppe Marmo
    • 3
  • Giuseppe Morandi
    • 4
  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  2. 2.Departamento de MatemáticasUniversidad Carlos III de MadridMadridSpain
  3. 3.Dipartimento di FisicheUniversitá di Napoli “Federico II”NapoliItaly
  4. 4.INFN Sezione di BolognaUniversitá di BolognaBolognaItaly

Personalised recommendations