The Classical Formulations of Dynamics of Hamilton and Lagrange

  • José F. Cariñena
  • Alberto Ibort
  • Giuseppe Marmo
  • Giuseppe Morandi


The present chapter is perhaps the place where our discourse meets more neatly the classic textbooks on the subject. Most classical books concentrate on the description of the formalisms developed by Lagrange and Euler on one side, and Hamilton and Jacobi on the other and commonly called today the Lagrangian and the Hamiltonian formalism respectively. The approach taken by many authors is that of postulating that the equations of dynamics are derived from variational principles (a route whose historical episodes are plenty of lights and shadows [Ma84]).


  1. [Ma84]
    Marmo, G., Mukunda, N., Sudarshan, E.C.G.: Relativistic particle dynamics–Lagrangian proof of the no-interaction theorem. Phys. Rev. D 30, 2110–2116 (1984)MathSciNetCrossRefADSGoogle Scholar
  2. [Jo64]
    Jost, R.: Poisson brackets (an unpedagogical lecture). Rev. Mod. Phys. 36, 572–579 (1964)CrossRefADSGoogle Scholar
  3. [Go81]
    Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley Publication, Reading (1981)Google Scholar
  4. [Sa71]
    Saletan, E.J., Cromer, A.H.: Theoretical Mechanics. J. Wiley, New York (1971)zbMATHGoogle Scholar
  5. [Ab78]
    Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd ed.n Benjamin, Reading (1978)Google Scholar
  6. [Go69]
    Gordon, W.B.: On the relation between period and energy in periodic dynamical systems. J. Math. Mech. 19, 111–114 (1969)MathSciNetzbMATHGoogle Scholar
  7. [Cu77]
    Cushman, R.H.: Notes on Topology and Mechanics. Mathametical Institute, Utrecht (1977)Google Scholar
  8. [Sm70]
    Smale, S.: Topology and mechanics. Invent. Math. 10, 305–331 (1970)MathSciNetCrossRefzbMATHADSGoogle Scholar
  9. [DeF89]
    de Filippo, S., Landi, G., Marmo, G., Vilasi, G.: Tensor fields defining a tangent bundle structure. Ann. Inst. H. Poincaré 50, 205–218 (1989)zbMATHGoogle Scholar
  10. [Mm85]
    Marmo, G., Saletan, E.J., Simoni, A., Vitale, B.: Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction. Wiley, Chichester (1985)zbMATHGoogle Scholar
  11. [Ar76]
    Arnol’d, V.I.: Méthodes mathématiques de la mécanique classique. Ed. Mir, 1976. Mathematical Methods of Classical Mechanics. Springer, Berlin (1989)Google Scholar
  12. [SW86]
    Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  13. [Mo91]
    Morandi, G., Ferrario, C., Lo, G.: Vecchio, G. Marmo and C. Rubano. The inverse problem in the calculus of variations and the geometry of the tangent bundle. Phys. Rep. 188, 147–284 (1991)CrossRefADSGoogle Scholar
  14. [ChB82]
    Choquet-Bruhat, Y., DeWitt-Morette, C.: Analysis, Manifolds and Physics, 2nd edn. North-Holland, Amsterdam (1982)Google Scholar
  15. [Cr83]
    Crampin, M.: Tangent bundle geometry for Lagrangian dynamics. J. Phys. A Math. Gen. 16, 3772–3775 (1983)Google Scholar
  16. [Cr87]
    Crampin, M., Ibort, L.A.: Graded Lie algebras of derivations and Ehresmann connections. J. Math. Pures et Appl. 66, 113–125 (1987)MathSciNetzbMATHGoogle Scholar
  17. [Ca95]
    Cariñena, J.F., Ibort, A., Marmo, G., Stern, A.: The Feynman problem and the inverse problem for Poisson dynamics. Phys. Rep. 263, 153–212 (1995)MathSciNetCrossRefADSGoogle Scholar
  18. [Wi39]
    Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)MathSciNetCrossRefGoogle Scholar
  19. [No82]
    Novikov, S.P.: The Hamiltonian formalism and a many valued analogue of Morse theory. Russ. Math. Surveys. 37, 1–56 (1982)CrossRefzbMATHADSGoogle Scholar
  20. [Hu92]
    Hughes, R.J.: On Feynman’s proof of the Maxwell equations. Amer. J. Phys. 60, 301–306 (1992)MathSciNetCrossRefADSGoogle Scholar
  21. [Mo93]
    Moreira, I.C.: Comment on ‘Feynman proof of the Maxwell equations’ by R. J. Hughes. Am. J. Phys. 61, 853 (1993)CrossRefADSGoogle Scholar
  22. [Ib91]
    Ibort, A., Marín-Solano, J.: On the inverse problem of the calculus of variations for a class of coupled dynamical systems. Inverse Prob. 7, 713–725 (1991)CrossRefzbMATHADSGoogle Scholar
  23. [CS55]
    Currie, D.I., Saletan, E.J.: \(q\)-equivalent particle Hamiltonians. I. The classical one-dimensional case. J. Math. Phys. 7, 967–974 (1966)MathSciNetCrossRefADSGoogle Scholar
  24. [HS84]
    Henneaux, M., Shepley, L.C.: Lagrangians for spherically symmetric potentials. J. Math. Phys. 23, 2101–2107 (1984)Google Scholar
  25. [Ib90]
    Ibort, A., López-Lacasta, C.: On the existence of local and Global’s for ordinary differential equations. J. Phys. A: Math. Gen. 23, 4779–4792 (1990)Google Scholar
  26. [Dy90]
    Dyson, F.J.: Feynman’s proof of the Maxwell equations. Amer. J. Phys. 58, 209–211 (1990)MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [Br78]
    Brinkman, W.F., Cross, M.C.: Spin and orbital dynamics of superfluid \({}^{3} {He}\). In: Brewer, D.F. (ed.) Progress in low temperature physics. North-Holland, Amsterdam (1978)Google Scholar
  28. [Ba82]
    Balachandran, A.P., Marmo, G., Stern, A. : A Lagrangian approach to the non-interaction theorem. Nuovo Cim. 69 A, 175–186 (1982)Google Scholar
  29. [Mi60]
    Milne-Thompson, L.M.: Theoretical Hydrodynamics. MacMillan, London (1960)Google Scholar
  30. [We78]
    Weinstein, A.: A universal phase space for particles in Yang-Mills fields. Lett. Math. Phys. 2, 417–20 (1978)CrossRefzbMATHADSGoogle Scholar
  31. [St77]
    Sternberg, S.: On minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc. Nat. Acad. Sci. 74, 5253–5254 (1977)MathSciNetCrossRefzbMATHADSGoogle Scholar
  32. [Gu84]
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)Google Scholar
  33. [Al94]
    Alekseevsky, D., Grabowski, J., Marmo, G., Michor, P.W.: Poisson structures on the cotangent bundle of a Lie group or a principal bundle and their reductions. J. Math. Phys. 35, 4909–4927 (1994)MathSciNetCrossRefzbMATHADSGoogle Scholar
  34. [Gr93]
    Grabowski, J., Marmo, G., Perelomov, A.: Poisson structures: towards a classification. Modern Phys. Lett. A 8, 1719–1733 (1993)MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. [Ko85]
    J.L. Koszul. Crochets de Schouten-Nijenhuis et cohomologie. Astérisque, Soc. Math. de France, hors of série, 257–71 (1985)Google Scholar
  36. [Ca94]
    Cariñena, J.F., Ibort, L.A., Marmo, G., Perelomov, A.M.: The geometry of Poisson manifolds and Lie algebras. J. Phys. A: Math. Gen. 27, 7425–7449 (1994)CrossRefzbMATHADSGoogle Scholar
  37. [Sk82]
    Sklyanin, E.K.: Some algebraic structures connected with the YangBaxter equation. Funct. Anal. Appl. 16, 263–270 (1982)Google Scholar
  38. [Ya92]
    Ya. I. Granovski, I. M. Lutzenko, A. S. Zhedanov. Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. of Phys. 217, 1–20 (1992)Google Scholar
  39. [Ahl93]
    Ahluwalia, K.S.: Fundamentals of Poisson Lie Groups with Application to the Classical Double. Cambridge preprint DAMTP 93–53 (1993). hep-th/9310068
  40. [Ta89]
    Takhtajan, L.: Introduction to quantum group and integrable massive models of quantum field theory. In: Ge, M.-L., Zhao, B.-H. (eds.) World scientific, Singapore (1990)Google Scholar
  41. [Ma90]
    Majid, S.: On \(q\)-regularization. Int. J. Mod. Phys. 5, 4689–4696 (1990)Google Scholar
  42. [Tj92]
    Tjin, T: Introduction to quantized Lie groups and Lie algebras. Int. J. Mod. Phys. A 7, 6175–6214 (1992)Google Scholar
  43. [Mr93]
    Marmo, G., Simoni, A., Stern, A.: Poisson Lie group symmetries for the isotropic rotator. Int. J. Mod. Phys. A 10, 99–114 (1995)MathSciNetCrossRefzbMATHADSGoogle Scholar
  44. [St94]
    Stern, A., Yakushin, I.: Deformation quantization of the isotropic rotator. Mod. Phys. Lett. A 10, 399–408 (1995)MathSciNetCrossRefzbMATHADSGoogle Scholar
  45. [Dr83]
    Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie Bialgebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Doklady 27, 68–71 (1983)Google Scholar
  46. [Dr86]
    Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie Bialgebras and the geometric meaning of the classical Yang-Baxter equations. In: Proceedings of the International Congress on Mathematicians, Berkeley, vol. 1. Academic Press, New York (1986)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José F. Cariñena
    • 1
  • Alberto Ibort
    • 2
  • Giuseppe Marmo
    • 3
  • Giuseppe Morandi
    • 4
  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  2. 2.Departamento de MatemáticasUniversidad Carlos III de MadridMadridSpain
  3. 3.Dipartimento di FisicheUniversitá di Napoli “Federico II”NapoliItaly
  4. 4.INFN Sezione di BolognaUniversitá di BolognaBolognaItaly

Personalised recommendations