The Language of Geometry and Dynamical Systems: The Linearity Paradigm

  • José F. CariñenaEmail author
  • Alberto Ibort
  • Giuseppe Marmo
  • Giuseppe Morandi


We can infer from the examples given in Chap.  1 that linear dynamical systems are interesting on their own.


  1. [MS85]
    Marmo, G., Saletan, E.J., Simoni, A., Vitale, B.: Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction. John Wiley, Chichester (1985)zbMATHGoogle Scholar
  2. [Ar73]
    Arnol’d, V.I.: Ordinary Differential Equations. MIT Press, Cambridge, 4th printing (1985).Google Scholar
  3. [HS74]
    Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press Inc., New York (1974)zbMATHGoogle Scholar
  4. [DF79]
    Dollard, J.C., Friedman, C.N.: Product Integrals. Addison-Wesley, Cambridge (1979)Google Scholar
  5. [ZK93]
    Zhu, J.C., Klauder, J.R.: Classical symptoms of quantum illness. Amer. J. Phys. 61, 605–611 (1993)MathSciNetCrossRefADSGoogle Scholar
  6. [Pa59]
    Palais, R.: Natural operations on differential forms. Trans. Amer. Math. Soc. 92, 125–141 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [AM78]
    Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin, Reading (1978).Google Scholar
  8. [Ne67]
    Nelson, E.: Tensor Analysis. Princeton University Press, New Jersey (1967)zbMATHGoogle Scholar
  9. [KN63]
    Kobayashi, S., Nomizu K.: Foundations of Differential Geometry, vol. 2. Interscience, New York (1963, 1969).Google Scholar
  10. [Pa54]
    Palais, R.: A definition of the exterior derivative in terms of Lie derivatives. Proc. Amer. Math. Soc. 5, 902–908 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [AM88]
    Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis and Applications, 2nd edn. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  12. [BC70]
    Brickell, F., Clarke, R.S.: Foundations of Differentiable Manifolds (An Introduction). Van Nostrand, Reinhold (1970)Google Scholar
  13. [Wa71]
    Warner, F.: Foundation of Differentiable Manifolds and Lie Groups. Scott Foresman, New York (1971)Google Scholar
  14. [MZ55]
    Montgomery, D., Zippin, L.: Topological Transformation Groups, vol. 1. Interscience Publishers, New York (1955)zbMATHGoogle Scholar
  15. [Gl52]
    Gleason, A.M.: Groups without small subgroups. Ann. Math. 56, 193–212 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Ja79]
    Jacobson, N.: Lie Algebras (No. 10). Dover Publications, New York (1979).Google Scholar
  17. [Mi83b]
    Milnor, J.: Remarks on infinite-dimensional Lie groups. In: DeWitt B. (ed.) Proceedings of Summer School on Quantum Gravity, Les Houches (1983).Google Scholar
  18. [CF04]
    Crainic, M., Fernandes, R.L.: Integrability of Poisson brackets. J. Diff. Geom. 66, 71–137 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José F. Cariñena
    • 1
    Email author
  • Alberto Ibort
    • 2
  • Giuseppe Marmo
    • 3
  • Giuseppe Morandi
    • 4
  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  2. 2.Departamento de MatemáticasUniversidad Carlos III de MadridMadridSpain
  3. 3.Dipartimento di FisicheUniversitá di Napoli “Federico II”NapoliItaly
  4. 4.INFN Sezione di BolognaUniversitá di BolognaBolognaItaly

Personalised recommendations