Advertisement

Gödel and Intuitionism

  • Mark van AttenEmail author
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 34)

Abstract

After a brief survey of Gödel’s personal contacts with Brouwer and Heyting, examples are discussed where intuitionistic ideas had a direct influence on Gödel’s technical work. Then it is argued that the closest rapprochement of Gödel to intuitionism is seen in the development of the Dialectica Interpretation, during which he came to accept the notion of computable functional of finite type as primitive. It is shown that Gödel already thought of that possibility in the Princeton lectures on intuitionism of Spring 1941, and evidence is presented that he adopted it in the same year or the next, long before the publication of 1958. Draft material for the revision of the Dialectica paper is discussed in which Gödel describes the Dialectica Interpretation as being based on a new intuitionistic insight obtained by applying phenomenology, and also notes that relate the new notion of reductive proof to phenomenology. In an appendix, attention is drawn to notes from the archive according to which Gödel anticipated autonomous transfinite progressions when writing his incompleteness paper.

Keywords

Finite Type Computable Function Intuitionistic Logic Original Emphasis Incompleteness Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This is the revised and much extended text of the talk with the same title given at the conference ‘Calculability and constructivity: historical and philosophical aspects’ of the International Union of the History and Philosophy of Science (Joint Session of the Division of Logic, Methodology and Philosophy of Science and of the Division of the History of Science and Technology), Paris, November 18, 2006. Much of that talk was derived from a manuscript that has in the meantime appeared as part of the present author’s contribution to van Atten and Kennedy (2009) (written in 2005). Other versions of that talk were presented at the plenary discussion ‘Gödel’s Legacy’ at the ASL European Summer Meeting in Nijmegen, August 2, 2006 and at seminars in Nancy (2005), Tokyo (2006), Utrecht (2006), and Aix-en-Provence (2007). I am grateful to the respective organisers for the invitations, and to the audiences for their questions, criticisms, and comments.

The quotations from Gödel’s notebooks and lecture notes appear courtesy of the Kurt Gödel Papers, The Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA, on deposit at Princeton University. I am grateful to Marcia Tucker, Christine Di Bella, and Erica Mosner of the Historical Studies-Social Science Library at the IAS for their assistance in finding anwers to various questions around this material. In the study of Gödel’s notes in Gabelsberger shorthand, I have been able to consult Cheryl Dawson’s transcriptions, which she generously made available to me; these were also useful to Robin Rollinger and Eva-Maria Engelen, to whom I am greatly indebted for additional, speedy help with the shorthand, also concerning previously untranscribed passages. Access to the microfilm edition of the Kurt Gödel Papers was kindly provided to Rollinger, Engelen and me by Gabriella Crocco. The present paper is realized as part of her project ‘Kurt Gödel philosophe: de la logique à la cosmologie’, funded by the Agence Nationale de Recherche (project number BLAN-NT09-436673), whose support is gratefully acknowledged.

Gödel’s letters to his brother quoted here are part of a collection of letters that was found in 2006. I am grateful to Matthias Baaz and Karl Sigmund for bringing this correspondence to my attention, and for providing me with photocopies. These letters have been deposited at the Wienbibliothek im Rathaus, Vienna. The quotations appear courtesy of the Kurt Gödel Papers, The Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA.

I am grateful to Dirk van Dalen, Georg Kreisel, Albert Visser, and, in particular, William Howard and Göran Sundholm, for comments, references, criticisms and discussion. An anonymous referee wrote a helpful report on an earlier version, and Jaime Gaspar helpfully sent a list of typing errors.

Prof. Howard kindly granted permission to quote from the reminiscences he sent me; some of these come from the notes he prepared for Amy Shell-Gellasch, who used them for her article Shell-Gellasch (2003). Those notes are now held at the Archives of American Mathematics, Dolph Briscoe Center for American History, University of Texas at Austin, as part of the William Howard Oral History Collection, 1973, 1990–2003. These Archives hold the copyright; quotations are by permission. I thank its staff member Carol Mead for her help and advice concerning this material and its use.

References

  1. Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In A. MacIntyre, L. Pacholski, & J. Paris (Eds.), Logic colloquium’77, Wroclaw (pp. 55–66). Amsterdam: North-Holland.Google Scholar
  2. Artemov, S. (2001). Explicit provability and constructive semantics. The Bulletin of Symbolic Logic, 7(1), 1–36.CrossRefGoogle Scholar
  3. van Atten, M. (2004). On Brouwer. Belmont, CA: Wadsworth.Google Scholar
  4. van Atten, M. (2006). Brouwer meets Husserl. On the phenomenology of choice sequences. Berlin: Springer.Google Scholar
  5. van Atten, M. (2010). Construction and constitution in mathematics. The New Yearbook for Phenomenology 10, 43–90.Google Scholar
  6. van Atten, M. (2012). The development of intuitionistic logic. In E. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2012 ed.). http://plato.stanford.edu/archives/win2012/entries/intuitionistic-logic-development/.
  7. van Atten, M. (forthcoming). Gödel’s Dialectica Interpretation and Leibniz. In G. Crocco (Ed.), Gödelian studies on the max-phil notebooks (Vol. 1). Aix-en-Provence: Presses Universitaires d’Aix-Marseille.Google Scholar
  8. van Atten, M., & Kennedy, J. (2003). On the philosophical development of Kurt Gödel. Bulletin of Symbolic Logic, 9(4), 425–476.CrossRefGoogle Scholar
  9. van Atten, M., & Kennedy, J. (2009). Gödel’s logics. In D. Gabbay & J. Woods (Eds.), Handbook of the history of logic (Logic from Russell to Church, Vol. 5, pp. 449–509). Amsterdam: Elsevier.CrossRefGoogle Scholar
  10. Bell, J. (1985). Set theory. Boolean-valued models and independence proofs (2nd ed.). Oxford: Clarendon Press.Google Scholar
  11. Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  12. Brouwer, L. E. J. (1907). Over de Grondslagen der Wiskunde. PhD thesis, Universiteit van Amsterdam [English translation in Brouwer (1975), pp. 11–101].Google Scholar
  13. Brouwer, L. E. J. (1908). De onbetrouwbaarheid der logische principes. Tijdschrift voor Wijsbegeerte, 2, 152–158 [English translation in Brouwer (1975), pp. 107–111].Google Scholar
  14. Brouwer, L. E. J. (1909). Het Wezen der Meetkunde. Amsterdam: Clausen [English translation in Brouwer (1975), pp. 112–120].Google Scholar
  15. Brouwer, L. E. J. (1912). Intuïtionisme en Formalisme. Amsterdam: Clausen [English translation in Benacerraf and Putnam (1983), pp. 77–89].Google Scholar
  16. Brouwer, L. E. J. (1918). Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre. KNAW Verhandelingen, 5, 1–43.Google Scholar
  17. Brouwer, L. E. J. (1919). Wiskunde, Waarheid, Werkelijkheid. Groningen: Noordhoff. (Combined reprint of Brouwer (1908, 1909, and 1912))Google Scholar
  18. Brouwer, L. E. J. (1921). Intuïtionistische verzamelingsleer. KNAW Verslagen, 29, 797–802 [English translation in Mancosu (1998), pp. 23–27.]Google Scholar
  19. Brouwer, L. E. J. (1922). Intuitionistische Mengenlehre. KNAW Proceedings, 23, 949–954.Google Scholar
  20. Brouwer, L. E. J. (1924a). Bewijs dat iedere volle functie gelijkmatig continu is. Koninklijke Nederlandse Akademie van Wetenschappen Verslagen, 33, 189–193 [English translation in Mancosu (1998), pp. 36–39].Google Scholar
  21. Brouwer, L. E. J. (1924b). Beweis dass jede volle Funktion gleichmässig stetig ist. Koninklijke Nederlandse Akademie van Wetenschappen Verslagen, 27, 189–193.Google Scholar
  22. Brouwer, L. E. J. (1927). Über Definitionsbereiche von Funktionen. Mathematische Annalen, 97, 60–75 [English translation of sections 1–3 in van Heijenoort (1967), pp. 457–463].Google Scholar
  23. Brouwer, L. E. J. (1929). Mathematik, Wissenschaft und Sprache. Monatshefte für Mathematik und Physik, 36, 153–164 [English translation in Mancosu (1998), pp. 45–53].Google Scholar
  24. Brouwer, L. E. J. (1930). Die Struktur des Kontinuums. Wien: Komitee zur Veranstaltung von Gastvorträgen ausländischer Gelehrter der exakten Wissenschaften [English translation in Mancosu (1998), pp.54–63].Google Scholar
  25. Brouwer, L. E. J. (1954). Points and spaces. Canadian Journal of Mathematics, 6, 1–17.CrossRefGoogle Scholar
  26. Brouwer, L. E. J. (1975). Collected works. I: Philosophy and foundations of mathematics (A. Heyting, Ed.). Amsterdam: North-Holland.Google Scholar
  27. Cairns, D. (1973). Guide for translating Husserl. The Hague: Martinus Nijhoff.CrossRefGoogle Scholar
  28. van Dalen, D. (1978). Filosofische Grondslagen van de Wiskunde. Assen: Van Gorcum.Google Scholar
  29. van Dalen, D. (2011). The selected correspondence of L.E.J. Brouwer. London: Springer.CrossRefGoogle Scholar
  30. Dawson, J., & Dawson, C.(2005). Future tasks for Gödel scholars. Bulletin of Symbolic Logic, 11(2), 150–171.CrossRefGoogle Scholar
  31. Dragálin, A. (1988). Mathematical intuitionism. introduction to proof theory. Providence, RI: American Mathematical Society. (Original publication Moscow, 1979.)Google Scholar
  32. Dummett, M. (2000). Elements of intuitionism (2nd Rev. ed.). Oxford: Oxford University Press.Google Scholar
  33. Feferman, S. (1993). Gödel’s Dialectica interpretation and its two-way stretch. In G. Gottlob et al. (Eds.), Computational logic and proof theory (LNCS, Vol. 713, pp. 23–40). (Quoted from the reprint in Feferman, S. (1998). In the light of logic (pp. 209–225). New York: Oxford University Press).Google Scholar
  34. Fitting, M. (1969). Intuitionistic logic, model theory, and forcing. Amsterdam: North-Holland.Google Scholar
  35. Gödel, K. (1931). Über formal unetscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198 [Also, with English translation, in Gödel (1986), pp. 144–195].Google Scholar
  36. Gödel, K. (1932). Heyting, Arend: Die intuitionistische Grundlegung der Mathematik. Zentralblatt für Mathematik und ihre Grenzgebiete, 2, 321–322 [Also, with English translation, in Gödel (1986), pp. 246–247].Google Scholar
  37. Gödel, K. (1933a) Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums, 4, 34–38 [Also, with English translation, in Gödel (1986), pp. 286–295].Google Scholar
  38. Gödel, K. (1933b). Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums, 4, 39–40 [Also, with English translation, in Gödel (1986), pp. 300–303].Google Scholar
  39. Gödel, K. (1933c). The present situation in the foundations of mathematics. (Lecture in Cambridge MA, published in Gödel (1995), pp. 45–53).Google Scholar
  40. Gödel, K. (1938a). The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences United States of America, 24, 556–557.Google Scholar
  41. Gödel, K. (1938b) Lecture at Zilsel’s. (Notes for a lecture in Vienna, published in Gödel (1995), pp. 86–113).Google Scholar
  42. Gödel, K. (1939). Consistency-proof for the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences United States of America, 25, 220–224.Google Scholar
  43. Gödel, K. (1941). In what sense is intuitionistic logic constructive? (Lecture at Yale, published in Gödel (1995), pp. 189–200).Google Scholar
  44. Gödel, K. (1944). Russell’s mathematical logic. In P. Schilpp (Ed.), The philosophy of Bertrand Russell. Evanston: Northwestern University. (Also in Gödel (1990), pp. 119–141).Google Scholar
  45. Gödel, K. (1958). Über eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes. Dialectica, 12, 280–287 [Also, with English translation, in Gödel (1990), pp. 240–251].Google Scholar
  46. Gödel, K. (1961/?). The modern development of the foundations of mathematics in the light of philosophy. (Lecture manuscript, published in Gödel (1995), pp. 374–387).Google Scholar
  47. Gödel, K. (1972a). On an extension of finitary mathematics which has not yet been used. (Revised and expanded translation of Gödel (1958), first published in Gödel (1990), pp. 271–280).Google Scholar
  48. Gödel, K. (1972b). Some remarks on the undecidability results. (First published in Gödel (1990), pp. 305–306).Google Scholar
  49. Gödel, K. (1986). Collected works. I: Publications 1929–1936 (S. Feferman et al., Eds.). Oxford: Oxford University Press.Google Scholar
  50. Gödel, K. (1990). Collected works. II: Publications 1938–1974 (S. Feferman et al., Eds.). Oxford: Oxford University Press.Google Scholar
  51. Gödel, K. (1995). Collected works. III: Unpublished essays and lectures (S. Feferman et al., Eds.). Oxford: Oxford University Press.Google Scholar
  52. Gödel, K. (2003a). Collected works. IV: Correspondence A–G (S. Feferman et al., Eds.). Oxford: Oxford University Press.Google Scholar
  53. Gödel, K. (2003b). Collected works. V: Correspondence H–Z (S. Feferman et al., Eds.). Oxford: Oxford University Press.Google Scholar
  54. Goodman, N.: (1970). A theory of constructions equivalent to arithmetic. In A. Kino, J. Myhill, & R. Vesley (Eds.), Intuitionism and proof theory. Proceedings of the summer conference at Buffalo N.Y. 1968 (pp. 101–120). Amsterdam: North-Holland.Google Scholar
  55. van Heijenoort, J. (Ed.). (1967). From Frege to Gödel: A sourcebook in mathematical logic, 1879–1931. Cambridge, MA: Harvard University Press.Google Scholar
  56. Heyting, A. (1931). Die intuitionistische Grundlegung der Mathematik. Erkenntnis, 2, 106–115 [English translation in Benacerraf and Putnam (1983), pp. 52–61].Google Scholar
  57. Heyting, A. (1934). Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie. Berlin: Springer.Google Scholar
  58. Heyting, A. (1956). Intuitionism. An introduction. Amsterdam: North-Holland.Google Scholar
  59. Heyting, A. (1958). Blick von der intuitionistischen Warte. Dialectica, 12, 332–345.CrossRefGoogle Scholar
  60. Howard, W. (unpublished), Autobiographical notes for Amy Shell-Gellasch. William Howard Oral History Collection, 1973, 1990–2003, Archives of American Mathematics, Dolph Briscoe Center for American History, University of Texas at Austin.Google Scholar
  61. Howard, W. (1970). Assignment of ordinals to terms for primitive recursive functionals of finite type. In A. Kino, J. Myhill, & R. Vesley (Eds.), Intuitionism and proof theory. Proceedings of the summer conference at Buffalo N.Y. 1968 (pp. 443–458). Amsterdam: North-Holland.Google Scholar
  62. Howard, W. (1980) The formulae-as-types notion of construction. In J. Seldin & J. Hindley (Eds.), To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism. London: Academic, pp. 479–490. Circulated from 1969.Google Scholar
  63. Husserl, E. (1950). Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch (W. Biemel, Ed.). The Hague: Martinus Nijhoff. (This is the edition Gödel owned, but today the preferred edition is Husserl (1976), translated into English as Husserl (1983)).Google Scholar
  64. Husserl, E. (1954). Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie (W. Biemel, Ed.). The Hague: Martinus Nijhoff. (Gödel owned the second edition, which was published in 1962.)Google Scholar
  65. Husserl, E. (1962). Phänomenologische Psychologie (W. Biemel, Ed.). The Hague: Martinus Nijhoff.Google Scholar
  66. Husserl, E. (1976). Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch (K. Schuhmann, Ed.). The Hague: Martinus Nijhoff [English translation Husserl (1983)].Google Scholar
  67. Husserl, E. (1983). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy, first book: General introduction to phenomenology (F. Kersten, Trans.). Dordrecht: Kluwer Academic.Google Scholar
  68. Kanckos, A. (2010). Consistency of Heyting arithmetic in natural deduction. Mathematical Logic Quarterly, 56(6), 611–624.CrossRefGoogle Scholar
  69. Kleene, S. (1987). Gödel’s impressions on students of logic in the 1930s. In Weingartner and Schmetterer (1987), pp. 49–64.Google Scholar
  70. Köhler, E. (2002). Gödel und der Wiener Kreis. In Köhler et al. (2002), pp. 83–108.Google Scholar
  71. Köhler, E. et al. (Eds.), (2002). Kurt Gödel. Wahrheit und Beweisbarkeit. Band 1: Dokumente und historische Analysen. Wien: öbv & hpt.Google Scholar
  72. Kreisel, G. (1960).Ordinal logics and the characterization of informal concepts of proof. In Proceedings of the International Congress of Mathematicians, 14–21 Aug 1958 (pp. 289–299). Cambridge: Cambridge University Press, Edinburgh.Google Scholar
  73. Kreisel, G. (1961). Set theoretic problems suggested by the notion of potential totality. In Infinitistic methods, Proceedings of the symposium on foundations mathematics, Warsaw 1959 (pp. 103–140). London: Pergamon Press.Google Scholar
  74. Kreisel, G. (1962). On weak completeness of intuitionistic predicate logic. Journal of Symbolic Logic, 27(2), 139–158.CrossRefGoogle Scholar
  75. Kreisel, G. (1965). Mathematical logic. In T. Saaty (Ed.), Lectures on modern mathematics (pp. 95–195). New York: Wiley.Google Scholar
  76. Kreisel, G. (1967). Informal rigour and completeness proofs. In I. Lakatos (Ed.), Problems in the philosophy of mathematics (pp. 138–186). Amsterdam: North-Holland.CrossRefGoogle Scholar
  77. Kreisel, G. (1968). Functions, ordinals, species. In B. van Rootselaar & J. Staal (Eds.), Logic, methodology, and philosophy of science III. Proceedings of the 3rd international congress, Amsterdam 1967 (pp. 145–159). Amsterdam: North-Holland.Google Scholar
  78. Kreisel, G. (1969). Review of Tait (1967). Zentralblatt für Mathematik 0174.01202.Google Scholar
  79. Kreisel, G. (1987a). Church’s Thesis and the ideal of informal rigour. Notre Dame Journal of Formal Logic, 28(4), 499–519.CrossRefGoogle Scholar
  80. Kreisel, G. (1987b). Gödel’s excursions into intuitionistic logic. In Weingartner and Schmetterer (1987), pp. 65–179.Google Scholar
  81. Kuroda, S. (1951). Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Mathematical Journal, 2, 35–47.Google Scholar
  82. Leibniz, G. (1875–1890). Die philosophischen Schriften von Gottfried Wilhelm Leibniz (vols. 1–7, C.I. Gerhardt, Ed.). Berlin: Weidmann.Google Scholar
  83. Mancosu, P. (1998). From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920s. Oxford: Oxford University Press.Google Scholar
  84. Mancosu, P. (2002). On the constructivity of proofs. A debate among Behmann, Bernays, Gödel and Kaufmann. In W. Sieg, R. Sommer, & C. Talcott (Eds.), Reflections on the foundations of mathematics: essays in honor of Solomon Feferman. Urbana: Association for Symbolic Logic, pp. 349–371.Google Scholar
  85. Myhill, J. (1966). Notes towards an axiomatization of intuitionistic analysis. Logique et Analyse, 9(35–36), 280–297.Google Scholar
  86. Myhill, J. (1968). Formal systems of intuitionistic analysis I. In B. van Rootselaar & J. Staal (Eds.), Logic, methodology, and philosophy of science III, Proceedings of the 3rd international congress, Amsterdam 1967 (pp. 161–178). Amsterdam, North-Holland.Google Scholar
  87. Péter, R. (1959). Rekursivität und Konstruktivität. In: A. Heyting (Ed.), Constructivity in mathematics (pp. 226–233). Amsterdam: North-Holland.Google Scholar
  88. Poutsma, H. (1914–1929). A Grammar of late modern English, for the use of continental, especially Dutch, students (two parts, in five volumes; two editions). Groningen: Noordhoff.Google Scholar
  89. Schimanovich-Galidescu, M. (2002). Archivmaterial zu Gödels Wiener Zeit, 1924–1940. In Köhler et al. (2002), pp. 135–147.Google Scholar
  90. Scott, D. (1970). Constructive validity. In Sympososium on automatic demonstration, Versailles, Dec 1968 (Lecture notes in mathematics, Vol. 125, pp. 237–275). Berlin: Springer.Google Scholar
  91. Shell-Gellasch, A. (2003). Reflections of my adviser: Stories of mathematics and mathematicians. Mathematical Intelligencer, 25(1), 35–41.CrossRefGoogle Scholar
  92. Skolem, T. (1955). A critical remark on foundational research. Kongelige Norske Videnskabsselskabs Forhandlinge, 28(20), 100–105.Google Scholar
  93. Spector, C. (1962). Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics. Proceedings of Symposia in Pure Mathematics, 5, 1–27.Google Scholar
  94. Spiegelberg, H. (1965). The phenomenological movement: A historical introduction (2 vols., 2nd ed.). The Hague: Martinus Nijhoff.Google Scholar
  95. Sundholm, G. (1983). Constructions, proofs and the meaning of logical constants. Journal of Philosophical Logic, 12, 151–172.CrossRefGoogle Scholar
  96. Sundholm, G. (2007). Semantic values of natural deduction derivations. Synthese, 148(3), 623–638.CrossRefGoogle Scholar
  97. Sundholm, G., & van Atten, M. (2008). The proper explanation of intuitionistic logic: on Brouwer’s proof of the Bar Theorem. In M. van Atten, P. Boldini, M. Bourdeau, & G. Heinzmann (Eds.), One hundred years of intuitionism (1907–2007). The Cerisy conference (pp. 60–77). Basel: Birkhäuser.Google Scholar
  98. de Swart, H. (1976a). Intuitionistic logic in intuitionistic metamathematics. Dissertation, Katholieke Universiteit Nijmegen.Google Scholar
  99. de Swart, H. (1976b). Another intuitionistic completeness proof. Journal of Symbolic Logic, 41(3), 644–662.CrossRefGoogle Scholar
  100. de Swart, H. (1977). An intuitionistically plausible interpretation of intuitionistic logic. Journal of Symbolic Logic, 42(4), 564–578.CrossRefGoogle Scholar
  101. Tait, W. (1967). Intensional interpretations of functionals of finite type. I. Journal of Symbolic Logic, 32(2), 198–212.CrossRefGoogle Scholar
  102. Tait, W. (2001). Gödel’s unpublished papers on foundations of mathematics. Philosophia Mathematica, 9, 87–126.CrossRefGoogle Scholar
  103. Tait, W. (2006). Gödel’s correspondence on proof theory and constructive mathematics. Philosophia Mathematica, 14, 76–111.CrossRefGoogle Scholar
  104. Tait, W. (2010). Gödel on Intuition and on Hilbert’s finitism. In S. Feferman, C. Parsons, & S. Simpson (Eds.), Kurt Gödel: Essays for his centennial (ASL lecture notes in logic, Vol. 33, pp. 88–108). Cambridge: Cambridge University Press.Google Scholar
  105. Troelstra, A. (1969). Principles of intuitionism. Berlin: Springer.Google Scholar
  106. Troelstra, A., & van Dalen, D. (1988). Constructivism in mathematics. An introduction (Vol. I). Amsterdam: North-Holland.Google Scholar
  107. Veldman, W. (1976). An intuitionistic completeness theorem for intuitionistic predicate logic. Journal of Symbolic Logic, 41(1), 159–166.Google Scholar
  108. Wang, H. (1974). From mathematics to philosophy. London: Routledge and Kegan Paul.Google Scholar
  109. Wang, H. (1987). Reflections on Kurt Gödel. Cambridge, MA: MIT.Google Scholar
  110. Wang, H. (1996). A logical journey. From Gödel to philosophy. Cambridge, MA: MIT.Google Scholar
  111. Weingartner, P., & Schmetterer, L. (Eds.). (1987). Gödel remembered, Salzburg 10–12 July 1983. Napoli: Bibliopolis.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Sciences, Normes, Décision (CNRS/Paris 4)ParisFrance

Personalised recommendations