Advertisement

The Developments of the Concept of Machine Computability from 1936 to the 1960s

  • Jean MosconiEmail author
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 34)

Abstract

From the 1940s to the 1960s, despite the significant work done on recursive functions (properly) and later on the lambda-calculus, the theory of calculability was developed more and more as a theory of computation by an idealized machine, or in the form of a general theory of algorithms. I will only deal here with the former aspect, a development that stems from the concepts introduced in 1936 by Turing. I will try to show how Turing’s ideas were gradually adopted, developed and modified. The Turing machine had an increasingly important role and was the object of systematic investigation. It was subsequently reworked to such an extent that a new model of machine was fashioned, the program and register machine. However, the initial model kept a significant place, and extensions of Turing’s analysis led, toward the end of the century, to profound reflections about the notion of a constructive object and the general notion of an algorithm.

Keywords

Turing Machine Recursive Function Finite Automaton Computability Theory Register Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asser, G. (1959). Turing-Maschinen und Markowsche Algorithmen. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 5, 346–365.CrossRefGoogle Scholar
  2. Bernays, P. (1958). Remarques sur le problème de la décision en logique élémentaire. In Le raisonnement en mathématiques et en sciences expérimentales, Colloques Internationaux du CNRS, 70 (pp. 39–44). Paris: CNRS.Google Scholar
  3. Boolos, G., & Jeffrey, R. (1974). Computability and logic. London: Cambridge University Press.Google Scholar
  4. Boone, W. J. (1958). An analysis of Turing’s ‘the word problem in semi-groups with cancellation’. Annals of Mathematics (Series 2), 67, 195–202.Google Scholar
  5. Boone, W. J. (1959). The word problem. Annals of Mathematics (Series 2), 70, 207–265.Google Scholar
  6. Büchi, R. (1962). Turing machines and the Entscheidungsproblem. Mathematische Annalen, 148, 201–213.CrossRefGoogle Scholar
  7. Burks, A. W. (1966). Introduction. In J. von Neumann (1966).Google Scholar
  8. Chomsky, N. (1963). Formal properties of grammars. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 2, chap. 12). New York: Wiley.Google Scholar
  9. Church, A. (1937). Review of Turing (1936). Journal of Symbolic Logic, 2, 42–43.Google Scholar
  10. Davis, M. (1958). Computability and unsolvability. New York: McGraw-Hill.Google Scholar
  11. Davis, M. (Ed.). (1965). The undecidable. Hewlett: Raven Press.Google Scholar
  12. Davis, M., Putnam, H., & Robinson, J. (1961). The decision problem for exponential Diophantine equations. Annals of Matematics (Series 2), 74(3), 425–436.Google Scholar
  13. Ershov, A. P. (1958). Operatornye algorifmy [Algorithmes d’opérateurs]. Doklady Akademii Nauk SSSR, 122, 967–970 [Automat. Express 1 (1959), 20–23].Google Scholar
  14. Fischer, P. (1966). Turing machines with restricted memory access. Information and Control, 9(4), 364–379.CrossRefGoogle Scholar
  15. Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H. J. Keisler, & K. Kunen (Eds.), The Kleene symposium (pp. 123–148). Amsterdam: North-Holland.CrossRefGoogle Scholar
  16. Gandy, R. (1988). The confluence of ideas in 1936. In Herken (1988) (pp. 55–111).Google Scholar
  17. Gandy, R. (2001), Preface to “On computable numbers”, pp. 9–17 in Turing (2001).Google Scholar
  18. Gödel, K. (1934). On undecidable propositions of formal mathematical systems. In Gödel (1986) (pp. 346–371).Google Scholar
  19. Gödel, K. (193?). [Undecidable Diophantine propositions]. In Gödel (1995) (pp. 164–175).Google Scholar
  20. Gödel, K. (1986). In S. Feferman et al. (Eds.), Gödel’s collected works I. New York: Oxford University Press.Google Scholar
  21. Gödel, K. (1995). In S. Feferman et al. (Eds.), Gödel’s collected works III. New York: Oxford University Press.Google Scholar
  22. Hartmanis, J. (1981). Observations about the development of theoretical computer science. Annals of the History of Computing, 3(1), 42–51.CrossRefGoogle Scholar
  23. Hartmanis, J., & Stearns, R. E. (1965). On the computational complexity of algorithms. Transactions AMS, 117, 285–306.CrossRefGoogle Scholar
  24. Herken, R. (Ed.). (1988). The universal Turing machine. Oxford/New York: Oxford University Press (2nd ed., 1995, Wien/New York: Springer).Google Scholar
  25. Hermes, H. (1954). Die Universalität programmgesteuerter Rechenmaschinen. Mathematisch-Physikalische Semsterberichte (Göttingen), 4, 42–53.Google Scholar
  26. Hermes, H. (1961). Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit. Berlin/Göttingen/ Heidelberg: Springer.CrossRefGoogle Scholar
  27. Hopcroft, J., & Ullman, J. D. (1979). Introduction to automata theory, languages and computation. Reading: Addison Wesley.Google Scholar
  28. Kaluznin, L. A. (1959). Ob algoritmizacii matematicheskikh zadach [On algorithmization of mathematical problems]. Problémy Kybérnétiki, 2, 51–67.Google Scholar
  29. Kaphengst, H. (1959). Eine abstrakte programmgesteuerte Rechenmaschine. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 5, 366–379.CrossRefGoogle Scholar
  30. Kleene, S. C. (1952). Introduction to metamathematics. Princeton: Van Nostrand.Google Scholar
  31. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. Project RAND research memorandum RM-704 (1951). In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 3–41). Princeton: Princeton University Press.Google Scholar
  32. Kleene, S. C. (1967). Mathematical logic. New York: Wiley.Google Scholar
  33. Kleene, S. C. (1981a). Origins of recursive function theory. Annals of History of Computing, 3(1), 52–67.CrossRefGoogle Scholar
  34. Kleene, S. C. (1981b). The theory of recursive functions approaching its centennial. Bulletin of the American Mathematical Society (New Series), 5, 43–61.CrossRefGoogle Scholar
  35. Kleene, S. C. (1989). The writing of introduction to metamathematics. In Th. Drucker (Ed.), Perspectives on the history of mathematical logic. Boston: Birkhäuser.Google Scholar
  36. Kolmogorov, A., & Uspensky, V. (1958). On the definition of an algorithm. Uspekhi Matematicheskikh Nauk XIII, 4(82), 1–28 [AMS Translations, 21, 2 (1963), 217–245].Google Scholar
  37. Lambek, J. (1961). How to program an infinite abacus. Canadian Mathematical Bulletin, 4(3), 295–302.CrossRefGoogle Scholar
  38. Lee, C. Y. (1960). Automata and finite automata. Bell System Technical Journal, 39, 1267–1295.CrossRefGoogle Scholar
  39. Manna, Z. (1974). Mathematical theory of computation. New York: McGraw Hill.Google Scholar
  40. Matiyasevich, Yu. V. (1984). (Am. Transl.), On investigations on some algorithmic problems in algebra and number theory. Proceedings of Steklov Institute of Mathematics, 168(3) (1986), 227–252.Google Scholar
  41. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133. (Reprinted in McCulloch (1965), Embodiments of Mind. Cambridge: MIT)Google Scholar
  42. Melzak, Z. A. (1961). An informal arithmetical approach to computability and computation. Canadian Mathematical Bulletin, 4(3), 279–293.CrossRefGoogle Scholar
  43. Minsky, M. (1961). Recursive unsolvability of Post’s problem of ‘tag’ and other topics in the theory of Turing machines. Annals of Mathematics, 74(3), 437–454.CrossRefGoogle Scholar
  44. Minsky, M. (1967). Computation – Finite and infinite machines. Englewood Cliffs: Prentice Hall.Google Scholar
  45. von Neumann, J. (1948). The general and logical theory of automata. In Cerebral mechanisms in behavior: The Hixon symposium (pp. 1–41). New York: Wiley. (Reprinted in J. von Neumann (1963). Collected works V, pp. 288–328)Google Scholar
  46. von Neumann, J. (1949). Theory and organization of complicated automata. In Lectures at the University of Illinois (pp. 31–87). In von Neumann (1966).Google Scholar
  47. von Neumann, J. (1952–1953). The theory of automata: Construction, reproduction, homogeneity, part II. In Theory of self-reproducing automata (pp. 91–296). Urbana: University of Illinois Press.Google Scholar
  48. von Neumann, J. (1963). Collected works (A. H. Taub, Ed., vol. V). Oxford/London/New York/Paris: Pergamon Press.Google Scholar
  49. von Neumann, J. (1966). A. W. Burks (Ed. and completed), Theory of self-reproducing automata. Urbana: University of Illinois Press.Google Scholar
  50. Oberschelp, W. (1958). Varianten von Turingmaschinen. Archiv für Mathematische Logik und Grundlagenforschung, 4, 53–62.CrossRefGoogle Scholar
  51. Péter, R. (1951). Rekursive Funktionen. Budapest: Akadémiai Kiado.Google Scholar
  52. Péter, R. (1958). Graphschemata und rekursive Funktionen. Dialectica, 12, 373–393.CrossRefGoogle Scholar
  53. Péter, R. (1959), Rekursivität und Konstruktivität. In Heyting, A. (Ed.), Constructivity in mathematics, proceedings of the colloquium, Amsterdam, August 1957 (pp. 226–233). Amsterdam: North Holland.Google Scholar
  54. Post, E. (1936). Finitary combinatory processes. Formulation 1. Journal of Symbolic Logic, I, 103–105.Google Scholar
  55. Post, E. (1943). Formal reductions of the general combinatorial decision problem. American Journal of Mathematics, 65, 197–215.CrossRefGoogle Scholar
  56. Post, E. (1944). Recursively enumerable sets of positive integers and their decision problems. Bulletin of the AMS, 50, 284–316. (Reprinted in Davis 1965)Google Scholar
  57. Post, E. (1947). Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic, 12, 1–11. (Reprinted in Davis (1965), pp. 293–303)Google Scholar
  58. Rabin, M. O., & Scott, D. (1959). Finite automata and their decision problems. IBM Journal of Research and Development, 3(2), 114–125. (Reprinted in E. F. Moore (Ed.), Sequential machines (pp. 63–91). Reading: Addison-Wesley)Google Scholar
  59. Rogers, H., Jr. (1967). Theory of recursive functions and effective computability. New York: McGraw-Hill.Google Scholar
  60. Scott, D. (1967). Some definitional suggestions for automata theory. Journal of Computer and System Science, 1(2), 187–212.CrossRefGoogle Scholar
  61. Shannon, C. E. (1938). A symbolic analysis of relay and switching circuits. AIEE Transactions, 57, 712–723.Google Scholar
  62. Shannon, C. E. (1956). A universal Turing machine with two internal states. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 157–165). Princeton: Princeton University Press.Google Scholar
  63. Shannon, C. E., & McCarthy, J. (Eds.). (1956). Automata studies. Princeton: Princeton University Press.Google Scholar
  64. Shepherdson, J. C., & Sturgis, H. E. (1963). Computability of recursive functions. Journal of the ACM, 10 (1963), 217–255.CrossRefGoogle Scholar
  65. Sieg, W. (1994) Mechanical procedures and mathematical experience. In George, A. (Ed.), Mathematics and mind (pp. 71–117). Oxford: Oxford University Press.Google Scholar
  66. Sieg, W. (2009). Computability theory. In A. Irvine, et al. (Eds.), Handbook of the philosophy of science. Philosophy of mathematics. Amsterdam/Boston: Elsevier.Google Scholar
  67. Sieg, W., & Byrnes, J. (1996). K-graph machines: Generalizing Turing’s machines and arguments. In P. Hajek (Ed.), Gödel ’96 (Lectures notes in logic 6, pp. 98–119). Berlin: Springer.Google Scholar
  68. Sieg, W., & Byrnes, J. (1999). Gödel, Turing and K-graph machines. In A. Cantini, et al. (Eds.), Logic and foundations of mathematics (Synthese library, Vol. 280, pp. 57–66). Dordrecht: Kluwer.Google Scholar
  69. Soare, R. I. (1996). Computability and recursion. The Bulletin of Symbolic Logic, 2(3), 284–321.CrossRefGoogle Scholar
  70. Thue, A. (1914). Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln (Skrifter utgit av Videnskappselskapet i Kristiania, I. Matematisk-naturvidenskabelig Klasse 1914 n 10). Kristiania: J. Dybwad.Google Scholar
  71. Trakhtenbrot, B. A. (1957). Algorifmi i machinnoie rechenie zadatch. Moscou. 2d. publ., 1960. (Am. Transl., Boston: Heath, 1963. French Transl., Algorithmes et machines à calculer, Paris: Dunod, 1963)Google Scholar
  72. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. In Proceedings of the London Mathematical Society (Series 2), 42, 230–265. A correction, ibid., 43, 1937, 544–546. (Reprinted in Davis (1965), pp.115–154)Google Scholar
  73. Turing, A. M. (1937). Computability and λ-definability. Journal of Symbolic Logic, 2, 153–163.CrossRefGoogle Scholar
  74. Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Society (Series 2), 45, 161–228. (Reprinted in Davis (1965), pp. 154–222)Google Scholar
  75. Turing, A. M. (1950). The word problem in semi-groups with cancellation. Annals of Mathematics (Series 2), 52, 491–505.Google Scholar
  76. Turing, A. M. (1954). Solvable and unsolvable problems. Science News, 31, 7–23. (Reprinted in Turing (1992), pp. 99–115)Google Scholar
  77. Turing, A. M. (1992). J. L. Britton (Ed.), Collected works: Pure mathematics. Amsterdam: North Holland.Google Scholar
  78. Turing, A. M. (2001). R. Gandy & C. Yates (Eds.), Collected works: Mathematical logic. Amsterdam: Elsevier.Google Scholar
  79. Uspensky, V. A. (1992). Kolmogorov and mathematical logic. Journal of Symbolic Logic, 57, 383–412.CrossRefGoogle Scholar
  80. Wang, H. (1957a). A variant to Turing’s theory of calculating machines. Journal of the ACM, 4(1), 63–92. (Reprinted in Wang, Hao (1970), ch. VI)Google Scholar
  81. Wang, H. (1957b). Universal Turing machines: An exercise in coding. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 3, 69–80. (Reprinted in Hao Wang (1970), ch. VII).Google Scholar
  82. Wang, H. (1970). Logic, computers and sets. New York: Chelsea. (Reprint of Wang, H., A survey of mathematical logic, Peking 1962/New York 1964)Google Scholar
  83. Wang, H. (1974). From mathematics to philosophy. London: Routledge/Kegan Paul.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.UMR 8560 IHPST – Institut d’Histoire et de Philosophie des Sciences et des TechniquesUniversité Paris 1 Panthéon-Sorbonne & CNRS & ENSParisFrance

Personalised recommendations