Constructive Recursive Functions, Church’s Thesis, and Brouwer’s Theory of the Creating Subject: Afterthoughts on a Parisian Joint Session

  • Göran SundholmEmail author
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 34)


The first half of the paper discusses recursive versus constructive functions and, following Heyting, stresses that from a constructive point the former cannot replace the latter. The second half of the paper treats of the Kreisel-Myhill theory CS for Brouwer’s Creating Subject, and its relation to BHK meaning-explanations and Kripke’s Schema. Kripke’s Schema is reformulated as a principle and shown to be classically valid. Assuming existence of a verification-object for this principle, a modification of a proof of conservativeness of Van Dalen’s, is shown to give a relative BHK meaning explanation for the Kreisel-Myhill connective. The result offers an explanation of why Kripke’s Schema can be used as a replacement of the Theory of Creating Subject when formulating Brouwerian counter-examples. It also shows that the Theory of Creating Subject is classically valid.


Recursive Function Recursion Equation Natural Deduction Constructive Function Existential Quantifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I was an invited speaker at the Joint Session in Paris and spoke on the notion of function in constructive mathematics. However, problems of health in 2007–2008 unfortunately prevented me from submitting anything to its Proceedings, whence it was a pleasant surprise, as well as a challenging task gladly undertaken, when Michel Bourdeau and Shahid Rahman requested that I write an introductory essay for the Proceedings volume. Accordingly, in these Afterthoughts I return to some of the things I said in my Paris talk in 2006, as well as present later reflections, caused by rethinking some of the issues and rereading many of the original sources. The material on Brouwer’s Creating Subject that is presented here was not part of my Paris lecture. It stems from research carried out during a Visiting Professorship at Lille, February to April 2012, and I am grateful to my host Shahid Rahman and his students for being such a keen audience. The criticism of the Kreisel-Troelstra-Dummett account was first presented in a Lille seminar April 5, 2012, with, appropriately enough, several of the participants of the Paris Joint Session also present, to wit, my Paris hosts Van Atten, Bourdeau, and Fichot.

I am indebted to Yannis Moschovakis for his valuable comments in the Paris discussion, but above all for sharing with me his correspondence with Alonzo Church and granting permission to publish this important document. I am also indebted to Thierry Coquand for discussion of Heyting’s views, as well as for providing me with a copy of the little known paper by Skolem that is referred to in his contribution to the present volume. Andrew Hodges and Tim Krabbé answered questions respectively on Alan Turing and on Langstaff. Michèle Friend gave helpful comments on the first, non-technical part. Furthermore, as always in recent years, I am indebted to Mark van Atten and Per Martin-Löf for stimulating conversations and valuable comments. In particular, Van Atten, by means of incisive questioning, forced me to revise my formulations on Leibniz and calculemus. He, as wel as Zoe McConaughey, helped greatly in producing the final draft of the manuscript. The IHPST, Paris, in the persons of Michel Bourdeau and Jean Fichot, offered generous hospitality on two occasions in May and November 2012.


  1. Ackermann, W. (1928). Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen, 99, 118–133.CrossRefGoogle Scholar
  2. Arnauld, A., & Nicole, P. (1662). La Logique ou L’Art de Penser. Paris: C. Savreux.Google Scholar
  3. van Atten, M. (2004). On brouwer. Louisville: Wadsworth—Thomson Learning.Google Scholar
  4. van Atten, M. (2008). The foundations of mathematics as a study of life: An effective but non-recursive function. Progress in Theoretical Physics, 173, 38–47.CrossRefGoogle Scholar
  5. van Atten, M. (2009). The hypothetical judgement in the history of intuitionistic logic. In C. Glymour, W. Wang, & D. Westerståhl (Eds.), Logic, methodology, and philosophy of science XIII: Proceedings of the 2007 international congress, Beijing (pp. 122–136). London: College Publications.Google Scholar
  6. Beeson, M. (1981). Formalizing constructive mathematics: Why and how? In F. Richman, Constructive mathematics (Lecture notes in mathematics, Vol. 873, pp. 146–190). Berlin: Springer.Google Scholar
  7. Beeson, M. (1985). Foundations of constructive mathematics. Berlin: Springer.CrossRefGoogle Scholar
  8. Brouwer, L. E. J. (1912). Intuitionisme en Formalisme (Inaugural lecture at the University of Amsterdam, October 14, 1912). Amsterdam: Clausen (Translated into English by Arnold Dresden as Intuitionism and formalism. Bulletin of the American Mathematical Society, 20, 81–96 (1913), reprinted in both editions of P. Benacerraf & H. Putnam (Eds.), Philosophy of Mathematics, Blackwell, Oxford, 1964, pp. 66–77, and Cambridge University Press, Cambridge, 1983, pp. 77–89.Google Scholar
  9. Church, A. (1936). An unsolvable problem in elementary number theory. American Journal of Mathematics, 58, 345–363CrossRefGoogle Scholar
  10. Curry, H., & Feys, R. (1958). Combinatory logic (Vol. 1). Amsterdam: North-Holland.Google Scholar
  11. van Dalen, D. (1978a). An interpretation of intuitionistic analysis. Annals of Mathematical Logic, 13, 1–43.CrossRefGoogle Scholar
  12. van Dalen, D. (1978b). Filosofische grondslagen van de wiskunde. Assen: Van Gorcum.Google Scholar
  13. van Dalen, D. (1982a). The creative subject and heyting arithmetic. In Universal algebra and applications (Banach Center publications, Vol. 8, pp. 379–382). Warsaw: PWN Scientific Publishers.Google Scholar
  14. van Dalen, D. (1982b). Braucht die konstruktive Mathematik Grundlagen? Jahresbericht der Deutschen Mathematiker-Vereinigung, 84, 57–78.Google Scholar
  15. van Dalen, D., & van Atten, M. (2002). Intuitionism. In D. Jaquette (Ed.), A companion to philosophical logic (pp. 513–530). Oxford: Balckwell.Google Scholar
  16. Dummett, M. (1975). The philosophical basis of intuitionistic logic. In M. Dummett, Truth and other Enigmas (pp. 215–247) London: Duckworth, 1978. Text of a lecture delivered at the Bristol Proceedings of the logic Colloquium’73, and originally published in the 1975 thereof.Google Scholar
  17. Dummett, M. (1977). Elements of intuitionism. Oxford: Oxford University Press.Google Scholar
  18. Enderton, H. (2010). Computability theory: An introduction to recursion theory. Burlington: Academic.Google Scholar
  19. Feferman, S. (1988). Turing in the land of O(z). In R. Herken (Ed.), The Universal Turing Machine (pp. 113–147). Oxford/New York: Oxford University Press.Google Scholar
  20. Fichte, J. G. (1797). Erste Einleitung in die Wissenschaftslehre. Philosophisches Journal, V, 1–47.Google Scholar
  21. Geach, P. (1965). Assertion. Philosophical Review, 74(4), 449–465.CrossRefGoogle Scholar
  22. Haberthür, R. (1976). Normalizationssätze für Intuitionistische Theorien mit Wahlfolgen. Dissertation, Basel University.Google Scholar
  23. Haberthür, R. (1978). Choice sequences and reduction processes. Archiv für mathematische Logik, 19, 31–49.CrossRefGoogle Scholar
  24. Heyting, A. (1954). Logique et intuitionnisme. In Actes du 2e colloque internationale de logique mathématique, Paris, 1952 (pp. 75–82). Paris-Lovain: Gauthier-Villars.Google Scholar
  25. Heyting, A. (1958a). Blick von der intuitionistischen Warte. Dialectica, 12, 332–345.CrossRefGoogle Scholar
  26. Heyting, A. (1958b). Intuitionism in mathematics. In R. Klibansky (Ed.), Philosophy in the mid-century. A survey (pp. 101–115). Firenze: La Nuova Editrice.Google Scholar
  27. Heyting, A. (1959). Some remarks on intuitionism. In A. Heyting (Ed.), Constructivity in mathematics (pp. 72–80). Amsterdam: North-Holland.Google Scholar
  28. Heyting, A. (1961). Infinitistic methods from a finitist point of view. In Infinitistic methods (pp. 185–192). Oxford/Warsaw: Pergamon/PWN.Google Scholar
  29. Heyting, A. (1962). After thirty years. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology, and philosophy of science, proceedings of 1960 international congress, Stanford (pp. 194–197). Stanford University Press.Google Scholar
  30. Heyting, A. (1969). Wat is berekenbaar? Nieuw Archief voor Wiskunde (3), 17, 1–7.Google Scholar
  31. Hodges, A. (1983). Alan turing: The Enigma. London: Burnett Books.Google Scholar
  32. Howard, W., & Kreisel, G. (1966). Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis. Journal of Symbolic Logic, 31, 325–358.CrossRefGoogle Scholar
  33. Hull, R. (1969). Counterexamples in intuitionistic analysis using Kripke’s schema. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 15, 241–246.CrossRefGoogle Scholar
  34. Kalmár, L. (1959). An argument against Church’s thesis. In A. Heyting (Ed.), Constructivity in mathematics (pp. 72–80). Amsterdam: North-Holland.Google Scholar
  35. Kleene, S. (1938). On notation for ordinal numbers. Journal of Symbolic Logic, 3, 150–155.CrossRefGoogle Scholar
  36. Kleene, S. (1952) Introduction to metamathematics. Amsterdam: North-Holland.Google Scholar
  37. Kleene, S. (1958). Extension of an effectively generated class of functions by enumeration. Colloquium Mathematicum, 6, 67–78.Google Scholar
  38. Kleene, S., & Vesley, R. (1965). The foundations of intuitionistic mathematics. Amsterdam: North-Holland.Google Scholar
  39. Krabbé, T. (1985). Chess curiosities. London: George Allen and Unwin.Google Scholar
  40. Kreisel, G. (1955). Models, translations, and interpretations. In Th. Skolem et al. (Eds.), Mathematical interpretations of formal systems (pp. 26–50). Amsterdam: North-Holland.CrossRefGoogle Scholar
  41. Kreisel, G. (1965). Mathematical logic. In T. Saaty (Ed.), Lectures on modern mathematics (pp. 95–195). New York: Wiley.Google Scholar
  42. Kreisel, G. (1967a). Informal rigour and completeness proofs. In I. Lakatos (Ed.), Problems in the philosophy of mathematics. Proceedings of the international colloquium in the philosophy of science, London, 1965 (Vol. 1, pp. 138–186). Amsterdam: North-Holland.Google Scholar
  43. Kreisel, G. (1967b). Review of Kleene and Vesley (1965). Zentralblatt für Mathematik und ihre Grenzgebiete, 123, 246–248.Google Scholar
  44. Kreisel, G. (1970a). Church’s thesis: A kind of reducibility axiom for constructive mathematics. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory. Proceedings of the summer conference, Buffalo, 1968 (pp. 121–150). Amsterdam: North-Holland.Google Scholar
  45. Kreisel, G. (1970b). Review of Myhill (1967). Zentralblatt für Mathematik und ihre Grenzgebiete, 187, 263–265.Google Scholar
  46. Kreisel, G. (1971). Review of Kreisel (1970). Zentralblatt für Mathematik und ihre Grenzgebiete, 199, 300–301.Google Scholar
  47. Kreisel, G. (1987). Church’s thesis and the ideal of informal rigour. Notre Dame Journal of Formal Logic, 28, 499–519.CrossRefGoogle Scholar
  48. Kreisel, G., & Troelstra, A. S. (1970). Formal systems for some branches of intuitionistic analysis. Annals of Mathematical Logic, 1, 229–387.CrossRefGoogle Scholar
  49. Kripke, S. A. (1965). Semantical analysis of intuitionistic logic I. In J. Crossley & M. Dummett (Eds.), Formal systems and recursive functions (pp. 92–130). Amsterdam: North-Holland.CrossRefGoogle Scholar
  50. Largeault, J. (1993). Intuition et intuitionisme. Paris: Vrin.Google Scholar
  51. Martin-Löf, P. (1984). Intuitionistic type theory. Naples: Bibliopolis. Notes taken by Giovanni Sambin of lectures given a Padua, 1980.Google Scholar
  52. Mendelson, E. (1963). On some recent criticisms of Church’s thesis. Notre Dame Journal of Formal Logic, 4(3), 201–205.CrossRefGoogle Scholar
  53. Mendelson, E. (1990). Second thoughts about Church’s thesis and mathematical proofs. Journal of Philosophy, 88(5), 225–233.CrossRefGoogle Scholar
  54. Molk, J. (1885). Sur une notion qui comprend celle de la divisibilité et sur la théorie de l’élimination. Acta Mathematica, 6, 1–166.Google Scholar
  55. Molk, J. (1904, 1907). Nombres irrationnels et notion de limite. Translated, expanded, and emended version of A. Pringsheim’s German original, Chapitre 1–3. In J. Molk (Ed.), Encyclopédie des Science Mathématiques Pure et Appliquée (Vol. 1)—Arithmétique, Fascicule 1 (August 10, 1904, pp. 133–160), Fascicule 2 (May 20, 1907, pp. 161–208).Google Scholar
  56. Myhill, J. (1967). Notes towards an axiomatization of intuitionistic analysis. Logique et Analyse, 35, 280–297.Google Scholar
  57. Myhill, J. (1968). Formal systems of intuitionistic analysis I. In B. van Rootselaar & J. F. Staal (Eds.), Logic, methodology and philosophy of science III. Proceedings of the third international conference for logic, methodology and philosophy of science, Amsterdam, 1968 (pp. 161–178).Google Scholar
  58. Myhill, J. (1970). Formal systems of intuitionistic analysis II: The theory of species. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory. Proceeedings of the summer conference, Buffalo, 1968 (pp. 151–162). Amsterdam: North-Holland.Google Scholar
  59. Péter, R. (1959). Rekursivität und Konstruktivität. In A. Heyting (Ed.), Constructivity in mathematics (pp. 226–233). Amsterdam: North-Holland.Google Scholar
  60. Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw-Hill.Google Scholar
  61. van Rootselaar, B. (1970). On subjective mathematical assertions. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory. Proceeedings of the summer conference, Buffalo, 1968 (pp. 187–196). Amsterdam: North-Holland.Google Scholar
  62. van Rootselaar, B., & Staal, J. F. (Eds.). (1968). Logic, methodology and philosophy of science III. Proceedings of the third international conference for logic, methodology and philosophy of science. Amsterdam: North-Holland.Google Scholar
  63. Scarpellini, B. (1971). Proof theory and intuitionistic systems (Lecture notes in mathematics, Vol. 212). Berlin: Springer.Google Scholar
  64. Sundholm, G. (1983). Constructions, proofs and the meaning of the logical constants. Journal of Philosophical Logic, 12, 151–172.CrossRefGoogle Scholar
  65. Sundholm, G. (1984). Brouwer’s anticipation of the principle of charity. In Proceedings of the Aristotelian Society, 85(1984–1985), 263–276.Google Scholar
  66. Sundholm, G. (2011). The vocabulary of epistemology, with observations on some surprising shortcomings of the English language. In A. Reboul (Ed.), Philosophical papers dedicated to Kevin Mulligan, Genève.
  67. Sundholm, G. (2013). Demonstrations versus proofs, being an afterword to constructions, proofs, and the meaning of the logical constants. In M. S. van der Schaar (Ed.), Judgement and the epistemic foundation of logic (pp. 15–22). Dordrecht: Springer.CrossRefGoogle Scholar
  68. Sundholm, G., & van Atten, M. (2008). The proper explanation of intuitionistic logic: On Brouwer’s proof of the Bar theorem. In M. van Atten, P. Boldini, M. Bourdeau, & G. Heinzmann (Eds.), One hundred years of intuitionism (1907–2007). The Cerisy conference. Basel: Birkhäuser.Google Scholar
  69. Tait, W. (2006). Gödel’s interpretation of intuitionism. Philosophia Mathematica (III), 14, 208–228.CrossRefGoogle Scholar
  70. Troelstra, A. (1969). Principles of intuitionism (Lecture notes in mathematics, Vol. 95). Berlin: Springer.Google Scholar
  71. Troelstra, A. (1980). The interplay between logic and mathematics: Intuitionism. In E. Agazzi (Ed.), Modern logic. A survey (pp. 197–221). Dordrecht: D. Reidel.Google Scholar
  72. Troelstra, A., & van Dalen, D. (1988). Constructivism in mathematics (Vol. I). Amsterdam: North-Holland.Google Scholar
  73. Vesley, R. (1970). A palatable substitute for Kripke’s schema. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory. Proceedings of the summer conference, Buffalo, 1968 (pp. 197–207). Amsterdam: North-Holland.Google Scholar
  74. Zermelo, E. (1908). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65, 107–128.CrossRefGoogle Scholar
  75. Zweig, S. (1979). The right to Heresy. In Erasmus and the right to Heresy. London: Souvenir Press (orig. edition Constable, 1936).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyLeiden UniversityLeidenThe Netherlands

Personalised recommendations