Advertisement

Complexity of Genotype-Phenotype Correlations in Mendelian Disorders: Lessons from Gaucher Disease

  • Nima Moaven
  • Nahid Tayebi
  • Ehud Goldin
  • Ellen SidranskyEmail author
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 6)

Abstract

Mendelian disorders are diseases which occur due to a mutation in the DNA sequence of a single gene. However, as we learn more about these inherited diseases, it is clear that there can be a vast spectrum of associated phenotypes. Gaucher disease is an example of a “simple” monogenic disorder with complex features. It results from the deficiency of the recessively inherited enzyme glucocerebrosidase, and is the most common lysosomal storage disorder. One of the chief clinical challenges facing geneticists and medical practitioners is to assess how adequately one can use genotype data to predict phenotypes. The ability to make such predictions is an essential tenet of individualized medicine and has implications for prenatal decision making. By understanding the limitations of genotype-phenotype correlation in monogenic disorders, we can gain insights that will help us to better understand the complexity in interpreting genetic data in multigene disorders. Factors including genetic modifiers, gene-gene interaction, reduced penetrance, imprinting, processed and non-processed pseudogenes, regulatory polymorphisms, epigenetics and the abundant number of private mutations, provide challenges for those seeking to understand genetic contributions to distinct phenotypes. Through a careful evaluation of one specific Mendelian disorder, Gaucher disease, we can learn lessons directly applicable to other diseases, both rare and common.

Keywords

Gaucher disease Glucocerebrosidase Mendelian disorder Genotype-phenotype correlation Genetic modifiers Parkinson disease Neurodegeneration 

Abbreviations

OMIM

Online Mendelian Inheritance in Man

PAS

Periodic acid-Schiff

ICGG

International Collaborative Gaucher Group

LSD

Lysosomal Storage Disorder

LIMP

Lysosomal Integral Membrane Protein

AMRF

Action Myoclonus-Renal Failure

CMT

Charcot Marie Tooth

MRI

Magnetic Resonance Imaging

HGMD

Human Gene Mutation Database

GWAS

Genome Wide Association Studies

CVS

Chorionic Villus Sampling

AVN

Avascular necrosis

FDA

Food and Drug Administration

ERT

Enzyme Replacement Therapy

SRT

Substrate Reduction Therapy

CNS

Central Nervous System

Notes

Acknowledgements

This work was supported by the Intramural Research Programs of the National Human Genome Research Institute and the National Institutes of Health. We acknowledge the assistance of Julia Fekecs in the preparation of the figure.

Glossary of Genetic Terms

Allelic Heterogeneity 

Different mutated alleles in a same gene can result in the same phenotype or symptom of a trait or a disorder.

Autosomal Dominant 

Autosomal dominant disorders occur through the inheritance of a single copy of a mutated gene found on an autosomal chromosome (non-sex chromosome). The single defective allele is sufficient to result in the phenotype.

Autosomal Recessive 

For an autosomal recessive disorder to occur, both copies (alleles) of the gene must be mutated. If only one allele is mutated, the product normal allele is considered to be sufficient to protect the individual from having the disorder, but such individual is considered to be a carrier of the condition.

Co-Dominant 

Co-dominant inheritance occurs when both alleles are expressed, and contribute to a phenotype.

Epigenetics 

Epigenetics results from changes in the regulation of the expression of a gene without an alteration in the genetic structure. A common epigenetic modification is methylation, where a methyl group binds to segments of DNA and turns off the gene so that no transcription results.

Exome

The exome includes all of the coding exons of genes. This accounts for 1.5 % (50 Mb) of the human genome. Whole exome sequencing is used to screen all of a patient’s coding regions to identify mutations in genes.

Genotype 

A specific set of alleles inherited at a locus, or the two alleles inherited for a particular gene.

Genome-Wide Association Study (GWAS) 

An approach to compare genetic variant markers across the complete DNA sequence of a group of patients or with those of appropriate controls to in order to identify genetic associations with recognizable traits or a disease. The markers are usually Single Nucleotide Polymorphism (SNP).

Inherited Diseases 

Diseases caused by mutations in genes or chromosomal abnormalities. A genetic disorder may or may not be a heritable disorder. Some genetic disorders are passed down from the parents’ genes, but others are almost always caused by new mutations or changes in DNA packaging.

Imprinting 

Maternal and/or paternal chromosomes are uniquely modified and lead to different expression of a certain gene or genes.

Monogenic Disorder 

These disorders are the result of a single mutated gene that can be passed on to subsequent generations in several ways (recessive, dominant, X-linked and co-dominant).

Mutation 

An alteration in the native sequence of a gene. A mutation may be disease-causing or a benign, normal variant. Mutations can be introduced during cell division by many factors such as radiation, mutagenic chemicals, or from infection by viruses. De novo mutations are new changes in a gene that occur in a germ cell (egg or sperm). Private mutations are mutations that are found in single families or isolated populations.

Penetrance 

A condition (most commonly inherited in an autosomal dominant manner) is said to have complete penetrance if clinical symptoms are present in all individuals who have the disease-causing mutation, and to have reduced or incomplete penetrance if clinical symptoms are not always present in all individuals who have the disease-causing mutation.

Phenotype 

The entire clinical, biochemical and physiological presentation of an individual determined both by a particular genotype and environmental influences.

Pleiotropy 

Several unrelated physical symptoms caused by a single mutant allele or both alleles.

Polymorphisms 

Natural variations in the DNA sequence of a gene or chromosome that have no adverse effects on the individual, and occur with high frequency in the general population. Polymorphisms involve one of two or more variants of a particular DNA sequence. The most common type of polymorphism is called a single nucleotide polymorphism, or SNP.

Pseudogene 

An incomplete copy of a gene which it does not have essential DNA sequence segments necessary for being a functional gene. A non-processed pseudogene includes most introns and exons of the gene. Integration of the cDNA (reverse transcription of an mRNA) of a gene into the genomic sequence results in a processed pseudogene and can occur during the course of evolution.

Recombinant Allele 

The result of the exchange of a segment of sister chromatid DNA between two homologous chromosomes during meiosis by a cross-over event, resulting to a new combination of genetic material in the offspring. This phenomenon is an important cause of the genetic variation seen among offspring.

RNA Interference (RNAi) 

An evolutionary process where small, double stranded RNA (dsRNA, 21–23 nucleotides) molecules inhibit or silence the expression or activity of a gene.

Sex-Linked Traits 

The traits or the disorders that their responsible genes are located on the sex chromosome (X or Y). Most of the genes are located on Y chromosome (one of the smallest chromosome) are also present on X chromosome. Therefore, the majority of sex-linked traits or disorders are X-linked. More than 1,000 human X-linked genes are known.

Variable Expressivity 

Individuals with the same mutation, even within a family, may demonstrate variation in clinical features (type and severity) of a genetic disorder.

References

  1. 1.
    Dipple KM, McCabe ER (2000) Phenotypes of patients with “simple” Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am J Hum Genet 66(6):1729–1735PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Dermitzakis ET, Clark AG (2009) Genetics. Life after GWA studies. Science 326(5950):239–240PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176PubMedCrossRefGoogle Scholar
  4. 4.
    Antonarakis SE, Chakravarti A, Cohen JC, Hardy J (2010) Mendelian disorders and multifactorial traits: the big divide or one for all? Nat Rev Genet 11(5):380–384PubMedCrossRefGoogle Scholar
  5. 5.
    Arora P, Newton-Cheh C (2010) Blood pressure and human genetic variation in the general population. Curr Opin Cardiol 25(3):229–237PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cox TM (2003) Future perspectives for glycolipid research in medicine. Philos Trans R Soc Lond B Biol Sci 358(1433):967–973PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141(2):210–217PubMedCrossRefGoogle Scholar
  8. 8.
    Gaucher PCE (1882) De l’epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucemie. Thesis, University of Paris, ParisGoogle Scholar
  9. 9.
    Brill NE, Mandlebaum FS (1913) Large-cell splenomegaly (Gaucher’s disease): a clinical and pathological study. Am J Med Sci 146(6):863–882CrossRefGoogle Scholar
  10. 10.
    Boven LA, van Meurs M, Boot RG, Mehta A, Boon L, Aerts JM, Laman JD (2004) Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 122:359–369PubMedCrossRefGoogle Scholar
  11. 11.
    Brady RO (1966) The sphingolipidoses. N Engl J Med 275(6):312–318PubMedCrossRefGoogle Scholar
  12. 12.
    Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CE, Grewal RP, Yu KT (1991) Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 324(21):1464–1470PubMedCrossRefGoogle Scholar
  13. 13.
    Beutler E, Grabowski G (2001) Gaucher disease. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3635–3668Google Scholar
  14. 14.
    Fisher ER, Reidbord H (1962) Gaucher’s disease: pathogenetic considerations based on electron microscopic and histochemical observations. Am J Pathol 41(6):679–692PubMedCentralPubMedGoogle Scholar
  15. 15.
    Sidransky E (2012) Gaucher disease: insights from a rare Mendelian disorder. Discov Med 14(77):273–281PubMedCentralPubMedGoogle Scholar
  16. 16.
    Martin BM, Sidransky E, Ginns EI (1989) Gaucher’s disease: advances and challenges. Adv Pediatr 36:277–306PubMedGoogle Scholar
  17. 17.
    Goker-Alpan O, Hruska KS, Orvisky E, Kishnani PS, Stubblefield BK, Schiffmann R, Sidransky E (2005) Divergent phenotypes in Gaucher disease implicate the role of modifiers. J Med Genet 42(6):e37PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mistry PK, Weinthal JA, Weinreb NJ (2012) Disease state awareness in Gaucher disease: a Q&A expert roundtable discussion. Clin Adv Hematol Oncol 10(6 Suppl 8):1–16PubMedGoogle Scholar
  19. 19.
    Zimran A, Altarescu G, Rudensky B, Abrahamov A, Elstein D (2005) Survey of hematological aspects of Gaucher disease. Hematology 10(2):151–156PubMedCrossRefGoogle Scholar
  20. 20.
    Mankin HJ, Rosenthal DI, Xavier R (2001) Gaucher disease. New approaches to an ancient disease. J Bone Joint Surg Am 83-A(5):748–762PubMedGoogle Scholar
  21. 21.
    Maas M, Poll LW, Terk MR (2002) Imaging and quantifying skeletal involvement in Gaucher disease. Br J Radiol 75(Suppl 1):A13–A24PubMedCrossRefGoogle Scholar
  22. 22.
    Goker-Alpan O (2011) Therapeutic approaches to bone pathology in Gaucher disease: past, present and future. Mol Genet Metab 104(4):438–447PubMedCrossRefGoogle Scholar
  23. 23.
    Mikosch P, Hughes D (2010) An overview on bone manifestations in Gaucher disease. Wien Med Wochenschr 160(23–24):609–624PubMedCrossRefGoogle Scholar
  24. 24.
    Cox TM, Aerts JM, Belmatoug N, Cappellini MD, vom Dahl S, Goldblatt J, Grabowski GA, Hollak CE, Hwu P, Maas M, Martins AM, Mistry PK, Pastores GM, Tylki-Szymanska A, Yee J, Weinreb N (2008) Management of non-neuronopathic Gaucher disease with special reference to pregnancy, splenectomy, bisphosphonate therapy, use of biomarkers and bone disease monitoring. J Inherit Metab Dis 31(3):319–336PubMedCrossRefGoogle Scholar
  25. 25.
    Hughes DA, Pastores GM (2013) Haematological manifestations and complications of Gaucher disease. Curr Opin Hematol 20(1):41–47PubMedCrossRefGoogle Scholar
  26. 26.
    Lewis S (2001) Gaucher’s disease. Nose bleeds and bruising. Lancet 358 Suppl:S30Google Scholar
  27. 27.
    Zimran A, Morris E, Mengel E, Kaplan P, Belmatoug N, Hughes DA, Malinova V, Heitner R, Sobreira E, Mrsić M, Granovsky-Grisaru S, Amato D, vom Dahl S (2009) The female Gaucher patient: the impact of enzyme replacement therapy around key reproductive events (menstruation, pregnancy and menopause). Blood Cells Mol Dis 43(3):264–288PubMedCrossRefGoogle Scholar
  28. 28.
    Givol N, Goldstein G, Peleg O, Shenkman B, Zimran A, Elstein D, Kenet G (2012) Thrombocytopenia and bleeding in dental procedures of patients with Gaucher disease. Haemophilia 18(1):117–121PubMedCrossRefGoogle Scholar
  29. 29.
    Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, Chen CM, Clark LN, Condroyer C, De Marco EV, Dürr A, Eblan MJ, Fahn S, Farrer MJ, Fung HC, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang AE, Lee-Chen GJ, Lesage S, Marder K, Mata IF, Mirelman A, Mitsui J, Mizuta I, Nicoletti G, Oliveira C, Ottman R, Orr-Urtreger A, Pereira LV, Quattrone A, Rogaeva E, Rolfs A, Rosenbaum H, Rozenberg R, Samii A, Samaddar T, Schulte C, Sharma M, Singleton A, Spitz M, Tan EK, Tayebi N, Toda T, Troiano AR, Tsuji S, Wittstock M, Wolfsberg TG, Wu YR, Zabetian CP, Zhao Y, Ziegler SG (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Yap TL, Gruschus JM, Velayati A, Westbroek W, Goldin E, Moaven N, Sidransky E, Lee JC (2011) Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem 286(32):28080–28088PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Goker-Alpan O, Stubblefield BK, Giasson BI, Sidransky E (2010) Glucocerebrosidase is present in α-synuclein inclusions in Lewy body disorders. Acta Neuropathol 120(5):641–649PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Sidransky E, Lopez G (2012) The link between the GBA gene and Parkinsonism. Lancet Neurol 11(11):986–998PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Nalls MA, Duran R, Lopez G, Kurzawa-Akanbi M, McKeith IG, Chinnery PF, Morris CM, Theuns J, Crosiers D, Cras P, Engelborghs S, De Deyn PP, Van Broeckhoven C, Mann DM, Snowden J, Pickering-Brown S, Halliwell N, Davidson Y, Gibbons L, Harris J, Sheerin UM, Bras J, Hardy J, Clark L, Marder K, Honig LS, Berg D, Maetzler W, Brockmann K, Gasser T, Novellino F, Quattrone A, Annesi G, De Marco EV, Rogaeva E, Masellis M, Black SE, Bilbao JM, Foroud T, Ghetti B, Nichols WC, Pankratz N, Halliday G, Lesage S, Klebe S, Durr A, Duyckaerts C, Brice A, Giasson BI, Trojanowski JQ, Hurtig HI, Tayebi N, Landazabal C, Knight MA, Keller M, Singleton AB, Wolfsberg TG, Sidransky E (2013) A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol 70:727–735PubMedCrossRefGoogle Scholar
  34. 34.
    Stepanian SV, Huyn ST, McCabe ER, Dipple KM (2003) Characterization of the human glycerol kinase promoter: identification of a functional HNF-4alpha binding site and evidence for transcriptional activation. Mol Genet Metab 80(4):412–418PubMedCrossRefGoogle Scholar
  35. 35.
    Kluijtmans LA, Whitehead AS (2001) Methylenetetrahydrofolate reductase genotypes and predisposition to atherothrombotic disease; evidence that all three MTHFR C677T genotypes confer different levels of risk. Eur Heart J 22(4):294–299PubMedCrossRefGoogle Scholar
  36. 36.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Park JK, Tayebi N, Stubblefield BK, LaMarca ME, MacKenzie JJ, Stone DL, Sidransky E (2002) The E326K mutation and Gaucher disease: mutation or polymorphism? Clin Genet 61(1):32–34PubMedCrossRefGoogle Scholar
  38. 38.
    Tajima A, Ohashi T, Hamano S, Higurashi N, Ida H (2010) Gaucher disease patient with myoclonus epilepsy and a novel mutation. Pediatr Neurol 42(1):65–68PubMedCrossRefGoogle Scholar
  39. 39.
    Verghese J, Goldberg RF, Desnick RJ, Grace ME, Goldman JE, Lee SC, Dickson DW, Rapin I (2000) Myoclonus from selective dentate nucleus degeneration in type 3 Gaucher disease. Arch Neurol 57:389–395PubMedCrossRefGoogle Scholar
  40. 40.
    de Siqueira LF (2010) Progressive myoclonic epilepsies: review of clinical, molecular and therapeutic aspects. J Neurol 257:1612–1619PubMedCrossRefGoogle Scholar
  41. 41.
    Blanz J, Groth J, Zachos C, Wehling C, Saftig P, Schwake M (2010) Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase. Hum Mol Genet 19(4):563–572PubMedCrossRefGoogle Scholar
  42. 42.
    Dardis A, Filocamo M, Grossi S, Ciana G, Franceschetti S, Dominissini S, Rubboli G, Di Rocco M, Bembi B (2009) Biochemical and molecular findings in a patient with myoclonic epilepsy due to a mistarget of the beta-glucosidase enzyme. Mol Genet Metab 97(4):309–311PubMedCrossRefGoogle Scholar
  43. 43.
    Balreira A, Gaspar P, Caiola D, Chaves J, Beirao I, Lima JL, Azevedo JE, Miranda MC (2008) A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum Mol Genet 17(14):2238–2243PubMedCrossRefGoogle Scholar
  44. 44.
    Choy FY, Campbell TN (2011) Gaucher disease and cancer: concept and controversy. Int J Cell Biol 2011:150450PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Allen MJ, Myer BJ, Khokher AM, Rushton N, Cox TM (1997) Pro-inflammatory cytokines and the pathogenesis of Gaucher’s disease: increased release of interleukin-6 and interleukin-10. QJM 90(1):19–25PubMedCrossRefGoogle Scholar
  46. 46.
    Lo SM, Choi M, Liu J, Jain D, Boot RG, Kallemeijn WW, Aerts JM, Pashankar F, Kupfer GM, Mane S, Lifton RP, Mistry PK (2012) Phenotype diversity in type 1 Gaucher disease: discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis. Blood 119(20):4731–4740PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281(3):249–254PubMedCrossRefGoogle Scholar
  48. 48.
    Fairley C, Zimran A, Phillips M, Cizmarik M, Yee J, Weinreb N, Packman S (2008) Phenotypic heterogeneity of N370S homozygotes with type I Gaucher disease: an analysis of 798 patients from the ICGG Gaucher Registry. J Inherit Metab Dis 31(6):738–744PubMedCrossRefGoogle Scholar
  49. 49.
    Mehta A (2006) Epidemiology and natural history of Gaucher’s disease. Eur J Intern Med 17(Suppl):S2–S5PubMedCrossRefGoogle Scholar
  50. 50.
    Benko WS, Hruska KS, Nagan N, Goker-Alpan O, Hart PS, Schiffmann R, Sidransky E (2008) Uniparental disomy of chromosome 1 causing concurrent Charcot-Marie-Tooth and Gaucher disease Type 3. Neurology 70(12):976–978PubMedCrossRefGoogle Scholar
  51. 51.
    Saranjam H, Chopra SS, Levy H, Stubblefield BK, Maniwang E, Cohen IJ, Baris H, Sidransky E, Tayebi N (2013) A germline or de novo mutation in two families with Gaucher disease: implications for recessive disorders. Eur J Hum Genet 21(1):115–117PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Barneveld RA, Keijzer W, Tegelaers FP, Ginns EI, Geurts van Kessel A, Brady RO, Barranger JA, Tager JM, Galjaard H, Westerveld A, Reuser AJ (1993) Assignment of the gene coding for human beta-glucocerebrosidase to the region q21-q31 of chromosome 1 using monoclonal antibodies. Hum Genet 64:227–231CrossRefGoogle Scholar
  53. 53.
    Winfield SL, Tayebi N, Martin BM, Ginns EI, Sidransky E (1997) Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease. Genome Res 7:1020–1026PubMedCentralPubMedGoogle Scholar
  54. 54.
    Hruska KS, LaMarca ME, Scott CR, Sidransky E (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29(5):567–583PubMedCrossRefGoogle Scholar
  55. 55.
    Alfonso P, Aznarez S, Giralt M, Pocovi M, Giraldo P (2007) Mutation analysis and genotype/phenotype relationships of Gaucher disease patients in Spain. J Hum Genet 52:391–396PubMedCrossRefGoogle Scholar
  56. 56.
    Tayebi N, Walker J, Stubblefield B, Orvisky E, LaMarca ME, Wong K, Rosenbaum H, Schiffmann R, Bembi B, Sidransky E (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79(2):104–109PubMedCrossRefGoogle Scholar
  57. 57.
    Velayati A, Yu WH, Sidransky E (2010) The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. Curr Neurol Neurosci Rep 10(3):190–198PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Liu J, Halene S, Yang M, Iqbal J, Yang R, Mehal WZ, Chuang WL, Jain D, Yuen T, Sun L, Zaidi M, Mistry PK (2012) Gaucher disease gene GBA functions in immune regulation. Proc Natl Acad Sci U S A 109(25):10018–10023PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Beutler E, West C (2002) Polymorphisms in glucosylceramide (glucocerebroside) synthase and the Gaucher disease phenotype. Isr Med Assoc J 4(11):986–988PubMedGoogle Scholar
  60. 60.
    Velayati A, Knight MA, Stubblefield BK, Sidransky E, Tayebi N (2011) Identification of recombinant alleles using quantitative real-time PCR implications for Gaucher disease. J Mol Diagn 13(4):401–405PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Martínez-Arias R, Comas D, Mateu E, Bertranpetit J (2001) Glucocerebrosidase pseudogene variation and Gaucher disease: recognizing pseudogene tracts in GBA alleles. Hum Mutat 17(3):191–198PubMedCrossRefGoogle Scholar
  62. 62.
    Tayebi N, Stubblefield BK, Park JK, Orvisky E, Walker JM, LaMarca ME, Sidransky E (2003) Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am J Hum Genet 72(3):519–534PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Grabowski GA (1997) Gaucher disease: gene frequencies and genotype/phenotype correlations. Genet Test 1(1):5–12PubMedGoogle Scholar
  64. 64.
    Grabowski GA (2000) Gaucher disease: considerations in prenatal diagnosis. Prenat Diagn 20(1):60–62PubMedCrossRefGoogle Scholar
  65. 65.
    Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15(7):267–272PubMedCrossRefGoogle Scholar
  66. 66.
    Sidransky E (2004) Gaucher disease: complexity in a “simple” disorder. Mol Genet Metab 83(1–2):6–15PubMedCrossRefGoogle Scholar
  67. 67.
    Wolf U (1991) Identical mutations and phenotypic variation. Hum Genet 100(3–4):305–321Google Scholar
  68. 68.
    Summers KM (1996) Relationship between genotype and phenotype in monogenic diseases: relevance to polygenic diseases. Hum Mutat 7(4):283–293PubMedCrossRefGoogle Scholar
  69. 69.
    Todd JA (1999) From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays 21(2):164–174PubMedCrossRefGoogle Scholar
  70. 70.
    Orvisky E, Park JK, Parker A, Walker JM, Martin BM, Stubblefield BK, Uyama E, Tayebi N, Sidransky E (2002) The identification of eight novel glucocerebrosidase (GBA) mutations in patients with Gaucher disease. Hum Mutat 19(4):458–459PubMedCrossRefGoogle Scholar
  71. 71.
    Koprivica V, Stone DL, Park JK, Callahan M, Frisch A, Cohen IJ, Tayebi N, Sidransky E (2000) Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet 66(6):1777–1786PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Walker JM, Lwin A, Tayebi N, LaMarca ME, Orvisky E, Sidransky E (2003) Glucocerebrosidase mutation T369M appears to be another polymorphism. Clin Genet 63(3):237–238PubMedCrossRefGoogle Scholar
  73. 73.
    Xu YH, Quinn B, Witte D, Grabowski GA (2003) Viable mouse models of acid beta-glucosidase deficiency: the defect in Gaucher disease. Am J Pathol 163(5):2093–2101PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Liu Y, Suzuki K, Reed JD, Grinberg A, Westphal H, Hoffmann A, Döring T, Sandhoff K, Proia RL (1998) Mice with type 2 and 3 Gaucher disease point mutations generated by a single insertion mutagenesis procedure. Proc Natl Acad Sci U S A 95(5):2503–2508PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Gan-Or Z, Giladi N, Orr-Urtreger A (2009) Differential phenotype in Parkinson’s disease patients with severe versus mild GBA mutations. Brain 132(Pt 10):e125PubMedCrossRefGoogle Scholar
  76. 76.
    Gieselmann V (2005) What can cell biology tell us about heterogeneity in lysosomal storage diseases? Acta Paediatr Suppl 94(447):80–86, discussion 79PubMedCrossRefGoogle Scholar
  77. 77.
    Mao R, O’Brien JF, Rao S, Schmitt E, Roa B, Feldman GL, Spence WC, Snow K (2001) Identification of a 55-bp deletion in the glucocerebrosidase gene in Gaucher disease: phenotypic presentation and implications for mutation detection assays. Mol Genet Metab 72(3):248–253PubMedCrossRefGoogle Scholar
  78. 78.
    Salvioli R, Tatti M, Scarpa S, Moavero SM, Ciaffoni F, Felicetti F, Kaneski CR, Brady RO, Vaccaro AM (2005) The N370S (Asn370 > Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C. Biochem J 390(Pt 1):95–103PubMedCentralPubMedGoogle Scholar
  79. 79.
    Pasmanik-Chor M, Laadan S, Elroy-Stein O, Zimran A, Abrahamov A, Gatt S, Horowitz M (1996) The glucocerebrosidase D409H mutation in Gaucher disease. Biochem Mol Med 59(2):125–133PubMedCrossRefGoogle Scholar
  80. 80.
    Uyama E, Uchino M, Ida H, Eto Y, Owada M (1997) D409H/D409H genotype in Gaucher-like disease. J Med Genet 34(2):175PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Chabás A, Cormand B, Grinberg D, Burguera JM, Balcells S, Merino JL, Mate I, Sobrino JA, Gonzàlez-Duarte R, Vilageliu L (1995) Unusual expression of Gaucher’s disease: cardiovascular calcifications in three sibs homozygous for the D409H mutation. J Med Genet 32(9):740–742PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Park JK, Orvisky E, Tayebi N, Kaneski C, Lamarca ME, Stubblefield BK, Martin BM, Schiffmann R, Sidransky E (2003) Myoclonic epilepsy in Gaucher disease: genotype-phenotype insights from a rare patient subgroup. Pediatr Res 53(3):387–395PubMedCrossRefGoogle Scholar
  83. 83.
    Kowarz L, Goker-Alpan O, Banerjee-Basu S, LaMarca ME, Kinlaw L, Schiffmann R, Baxevanis AD, Sidransky E (2005) Gaucher mutation N188S is associated with myoclonic epilepsy. Hum Mutat 26(3):271–3; author reply 274–5PubMedCrossRefGoogle Scholar
  84. 84.
    Goker-Alpan O, Schiffmann R, Park JK, Stubblefield BK, Tayebi N, Sidransky E (2003) Phenotypic continuum in neuronopathic Gaucher disease: an intermediate phenotype between type 2 and type 3. J Pediatr 143(2):273–276PubMedCrossRefGoogle Scholar
  85. 85.
    Latham TE, Theophilus BD, Grabowski GA, Smith FI (1991) Heterogeneity of mutations in the acid beta-glucosidase gene of Gaucher disease patients. DNA Cell Biol 10(1):15–21PubMedCrossRefGoogle Scholar
  86. 86.
    Grabowski GA, Horowitz M (1997) Gaucher’s disease: molecular, genetic and enzymological aspects. Baillieres Clin Haematol 10(4):635–656PubMedCrossRefGoogle Scholar
  87. 87.
    Panicker LM, Miller D, Park TS, Patel B, Azevedo JL, Awad O, Masood MA, Veenstra TD, Goldin E, Stubblefield BK, Tayebi N, Polumuri SK, Vogel SN, Sidransky E, Zambidis ET, Feldman RA (2012) Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci U S A 109(44):18054–18059PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Romeo G, McKusick VA (1994) Phenotypic diversity, allelic series and modifier genes. Nat Genet 7(4):451–453PubMedCrossRefGoogle Scholar
  89. 89.
    Latham T, Grabowski GA, Theophilus BD, Smith FI (1990) Complex alleles of the acid beta-glucosidase gene in Gaucher disease. Am J Hum Genet 47(1):79–86PubMedCentralPubMedGoogle Scholar
  90. 90.
    Lachmann RH, Grant IR, Halsall D, Cox TM (2004) Twin pairs showing discordance of phenotype in adult Gaucher’s disease. QJM 97(4):199–204PubMedCrossRefGoogle Scholar
  91. 91.
    Kissler S (2011) From genome-wide association studies to etiology: probing autoimmunity genes by RNAi. Trends Mol Med 17(11):634–640PubMedCrossRefGoogle Scholar
  92. 92.
    Armstrong LC, Komiya T, Bergman BE, Mihara K, Bornstein P (1997) Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J Biol Chem 272(10):6510–6518PubMedCrossRefGoogle Scholar
  93. 93.
    Velayati A, DePaolo J, Gupta N, Choi JH, Moaven N, Westbroek W, Goker-Alpan O, Goldin E, Stubblefield BK, Kolodny E, Tayebi N, Sidransky E (2011) A mutation in SCARB2 is a modifier in Gaucher disease. Hum Mutat 32(11):1232–1238PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Tamargo RJ, Velayati A, Goldin E, Sidransky E (2012) The role of saposin C in Gaucher disease. Mol Genet Metab 106(3):257–263PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Greenwood A, Elstein D, Zimran A, Altarescu G (2010) Effect of vitamin D receptor (VDR) genotypes on the risk for osteoporosis in type 1 Gaucher disease. Clin Rheumatol 29(9):1037–1041PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang CK, Stein PB, Liu J, Wang Z, Yang R, Cho JH, Gregersen PK, Aerts JM, Zhao H, Pastores GM, Mistry PK (2012) Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hematol 87(4):377–383PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Zimran A (2011) How I treat Gaucher disease. Blood 118(6):1463–1471PubMedCrossRefGoogle Scholar
  98. 98.
    Saroha V, Gupta P, Singh M, Singh T (2009) Pseudogaucher cells obscuring multiple myeloma: a case report. Cases J 2:9147PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Sidransky E, Bottler A, Stubblefield B, Ginns EI (1994) DNA mutational analysis of type 1 and type 3 Gaucher patients: how well do mutations predict phenotype? Hum Mutat 3(1):25–28PubMedCrossRefGoogle Scholar
  100. 100.
    McEachern KA, Fung J, Komarnitsky S, Siegel CS, Chuang WL, Hutto E, Shayman JA, Grabowski GA, Aerts JM, Cheng SH, Copeland DP, Marshall J (2007) A specific and potent inhibitor of glucosylceramide synthase for substrate reduction therapy of Gaucher disease. Mol Genet Metab 91(3):259–267PubMedCrossRefGoogle Scholar
  101. 101.
    Benito JM, García Fernández JM, Ortiz Mellet C (2011) Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opin Ther Pat 21(6):885–903PubMedCrossRefGoogle Scholar
  102. 102.
    Goldin E, Zheng W, Motabar O, Southall N, Choi JH, Marugan J, Austin CP, Sidransky E (2012) High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase. PLoS One 7(1):e29861PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Nima Moaven
    • 1
  • Nahid Tayebi
    • 1
  • Ehud Goldin
    • 1
  • Ellen Sidransky
    • 1
    Email author
  1. 1.Section on Molecular Neurogenetics, Medical Genetics BranchNational Human Genome Research Institute (NHGRI), National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations