Advertisement

Emerging Technologies for Gene Identification in Rare Diseases

  • Filippo Beleggia
  • Bernd WollnikEmail author
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 6)

Abstract

Rare diseases are a heavy burden on affected individuals and, collectively, on society. Since most rare diseases have a genetic cause, the identification of disease-causing genes is the first step in the unravelling of pathogenic mechanisms and in the search for specific therapeutic options. New technologies based on Next Generation Sequencing (NGS) greatly facilitate the discovery of disease-causing genes, especially when coupled with efficient data-analysis strategy. Additionally, NGS is slowly entering the clinical arena as a diagnostic tool for rare diseases, drastically reducing the time required to arrive at a correct diagnosis.

Keywords

Rare diseases Gene identification Next generation sequencing Exome sequencing Genome sequencing Filtering strategies Human genetics 

References

  1. 1.
    Joppi R, Bertele’ V, Garattini S (2013) Orphan drugs, orphan diseases. The first decade of orphan drug legislation in the EU. Eur J Clin Pharmacol 69(4):1009–1024PubMedCrossRefGoogle Scholar
  2. 2.
    Melnikova I (2012) Rare diseases and orphan drugs. Nat Rev Drug Discov 11(4):267–268PubMedCrossRefGoogle Scholar
  3. 3.
    Wästfelt M, Fadeel B, Henter JI (2006) A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J Intern Med 260(1):1–10PubMedCrossRefGoogle Scholar
  4. 4.
    Tambuyzer E (2010) Rare diseases, orphan drugs and their regulation: questions and misconceptions. Nat Rev Drug Discov 9(12):921–929PubMedCrossRefGoogle Scholar
  5. 5.
    Schieppati A, Henter JI, Daina E, Aperia A (2008) Why rare diseases are an important medical and social issue. Lancet 371(9629):2039–2041PubMedCrossRefGoogle Scholar
  6. 6.
    Collins FS (1995) Positional cloning moves from perditional to traditional. Nat Genet 9(4):347–350PubMedCrossRefGoogle Scholar
  7. 7.
    Collins FS (1992) Positional cloning: let’s not call it reverse anymore. Nat Genet 1(1):3–6PubMedCrossRefGoogle Scholar
  8. 8.
    Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12(11):745–755PubMedCrossRefGoogle Scholar
  9. 9.
    Rabbani B, Mahdieh N, Hosomichi K, Nakaoka H, Inoue I (2012) Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet 57(10):621–632PubMedCrossRefGoogle Scholar
  10. 10.
    Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364PubMedPubMedCentralGoogle Scholar
  11. 11.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Homer N, Tibbetts K, Wysoker A, Fennell T, McCowan M (2009) Picard. http://picard.sourceforge.net. Accessed 25 June 2014
  14. 14.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92CrossRefGoogle Scholar
  18. 18.
    Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN (2014) The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet al, Gibbs RA, Eng CM (2013) Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 369(16):1502–1511Google Scholar
  20. 20.
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65PubMedCrossRefGoogle Scholar
  22. 22.
    NHLBI GO Exome Sequencing Project (2011) Exome variant server. http://evs.gs.washington.edu/EVS. Accessed 25 June 2014
  23. 23.
    Gilissen C, Hoischen A, Brunner HG, Veltman JA (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20(5):490–497PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Schreml J, Durmaz B, Cogulu O, Keupp K, Beleggia F, Pohl E, Milz E, Coker M, Ucar SK, Nürnberg G, Nürnberg P, Kuhn J, Ozkinay F (2014) The missing “link”: an autosomal recessive short stature syndrome caused by a hypofunctional XYLT1 mutation. Hum Genet 133(1):29–39PubMedCrossRefGoogle Scholar
  25. 25.
    Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp N, del Rosario M, van Bon BW, Hoischen A, de Vries BB, Brunner HG, Veltman JA (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112PubMedCrossRefGoogle Scholar
  26. 26.
    Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, Abu Rayyan A, Loulus S, Avraham KB, King MC, Kanaan M (2010) Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet 87(1):90–94PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576PubMedCrossRefGoogle Scholar
  30. 30.
    Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21(9):2076–2082PubMedCrossRefGoogle Scholar
  34. 34.
    Opitz JM, Weaver DW, Reynolds JF Jr (1998) The syndromes of Sotos and Weaver: reports and review. Am J Med Genet 79(4):294–304PubMedCrossRefGoogle Scholar
  35. 35.
    Pohl E, Aykut A, Beleggia F, Karaca E, Durmaz B, Keupp K, Arslan E, Onay MP, Yigit G, Ozkinay F, Wollnik B (2013) A hypofunctional PAX1 mutation causes autosomal recessively inherited otofaciocervical syndrome. Hum Genet 132(11):1311–1320PubMedCrossRefGoogle Scholar
  36. 36.
    Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25(21):2865–2871PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, Eichler EE, Sahinalp SC (2010) Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics 26(12):350–357CrossRefGoogle Scholar
  38. 38.
    Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6(9):677–681PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, Rodenburg RJ, Yntema HG, Spruijt L, Vermeer S, Rinne T, van Gassen KL, Bodmer D, Lugtenberg D, de Reuver R, Buijsman W, Derks RC, Wieskamp N, van den Heuvel B, Ligtenberg MJ, Kremer H, Koolen DA, van de Warrenburg BP, Cremers FP, Marcelis CL, Smeitink JA, Wortmann SB, van Zelst-Stams WA, Veltman JA, Brunner HG, Scheffer H, Nelen MR (2013) A post-hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 34(12):1721–1726PubMedCrossRefGoogle Scholar
  40. 40.
    Veeramah KR, O’Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, Talwar D, Girirajan S, Eichler EE, Restifo LL, Erickson RP, Hammer MF (2012) De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 90(3):502–510PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, Liang J, Wang Z, Cao D, Carter MT, Chrysler C, Drmic IE, Howe JL, Lau L, Marshall CR, Merico D, Nalpathamkalam T, Thiruvahindrapuram B, Thompson A, Uddin M, Walker S, Luo J, Anagnostou E, Zwaigenbaum L, Ring RH, Wang J, Lajonchere C, Wang J, Shih A, Szatmari P, Yang H, Dawson G, Li Y, Scherer SW (2013) Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 93(2):249–263PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grünhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparrós-Martín JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schönau E, Ruiz-Perez VL, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92(4):565–574PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Human GeneticsUniversity Medical Faculty, University of CologneCologneGermany
  2. 2.Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
  3. 3.Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)University of CologneCologneGermany

Personalised recommendations