Skip to main content

Trapping to Monitor Tephritid Movement: Results, Best Practice, and Assessment of Alternatives

  • Chapter
  • First Online:
Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies

Abstract

Movement of tephritid flies underpins their survival, reproduction, and ability to establish in new areas and is thus of importance when designing effective management strategies. Much of the knowledge currently available on tephritid movement throughout landscapes comes from the use of direct or indirect methods that rely on the trapping of individuals. Here, we review published experimental designs and methods from mark-release-recapture (MRR) studies, as well as other methods, that have been used to estimate movement of the four major tephritid pest genera (Bactrocera, Ceratitis, Anastrepha, and Rhagoletis). In doing so, we aim to illustrate the theoretical and practical considerations needed to study tephritid movement. MRR studies make use of traps to directly estimate the distance that tephritid species can move within a generation and to evaluate the ecological and physiological factors that influence dispersal patterns. MRR studies, however, require careful planning to ensure that the results obtained are not biased by the methods employed, including marking methods, trap properties, trap spacing, and spatial extent of the trapping array. Despite these obstacles, MRR remains a powerful tool for determining tephritid movement, with data particularly required for understudied species that affect developing countries. To ensure that future MRR studies are successful, we suggest that site selection be carefully considered and sufficient resources be allocated to achieve optimal spacing and placement of traps in line with the stated aims of each study. An alternative to MRR is to make use of indirect methods for determining movement, or more correctly, gene flow, which have become widely available with the development of molecular tools. Key to these methods is the trapping and sequencing of a suitable number of individuals to represent the genetic diversity of the sampled population and investigate population structuring using nuclear genomic markers or non-recombinant mitochondrial DNA markers. Microsatellites are currently the preferred marker for detecting recent population displacement and provide genetic information that may be used in assignment tests for the direct determination of contemporary movement. Neither MRR nor molecular methods, however, are able to monitor fine-scale movements of individual flies. Recent developments in the miniaturization of electronics offer the tantalising possibility to track individual movements of insects using harmonic radar. Computer vision and radio frequency identification tags may also permit the tracking of fine-scale movements by tephritid flies by automated resampling, although these methods come with the same problems as traditional traps used in MRR studies. Although all methods described in this chapter have limitations, a better understanding of tephritid movement far outweighs the drawbacks of the individual methods because of the need for this information to manage tephritid populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RG, Sohal RS (1982) Life-lengthening effects of gamma-radiation on the adult housefly, Musca domestica. Mech Ageing Dev 20:369–375

    CAS  PubMed  Google Scholar 

  • Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski LM, Gasperi G, Malacrida AR, Gugliemino CR (2007) Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Mol Ecol 16:3522–3532

    CAS  PubMed  Google Scholar 

  • Aluja M, Prokopy RJ (1992) Host search behavior by Rhagoletis pomonella flies – inter-tree movement patterns in response to wind-borne fruit volatiles under field conditions. Physiol Entomol 17:1–8

    Google Scholar 

  • Andress E, Walters I, del Toro M, Shelly T (2013) Release-recapture of sterile male Mediterranean fruit flies (Diptera: Tephritidae) in southern California. Proc Hawaii Entomol Soc 45:11–29

    Google Scholar 

  • Arévalo HA, Collins J, Groden E, Drummond F, Simon K (2009) Marking bluberry maggot flies (Diptera: Tephritidae) with fluorescent diet for recapture studies. Fla Entomol 92:379–381

    Google Scholar 

  • Baker PS, Chan AST (1991a) Appetitive dispersal of sterile fruit-flies – aspects of the methodology and analysis of trapping studies. Zeitschrift für Angewandte Entomologie 112:263–273

    Google Scholar 

  • Baker PS, Chan AST (1991b) Quantification of tephritid fruit-fly dispersal – guidelines for a sterile release program. Zeitschrift für Angewandte Entomologie 112:410–421

    Google Scholar 

  • Baker PS, Chan AST, Jimeno Zavala MA (1986) Dispersal and orientation of sterile Ceratitis capitata and Anastrepha ludens (Tephritidae) in Chiapas, Mexico. J Appl Ecol 23:27–38

    Google Scholar 

  • Baliraine FN, Bonizzoni M, Osir EO, Lux SA, Mulaa FJ, Zheng L, Gomulski LM, Gasperi G, Malacrida AR (2003) Comparative analysis of microsatellite loci in four fruit fly species of the genus Ceratitis (Diptera: Tephritidae). Bull Entomol Res 93:1–10

    CAS  PubMed  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    PubMed  Google Scholar 

  • Banks HT, Kareiva PM, Lamm PK (1985) Modelling insect dispersal and estimating parameters when mark-release techniques may cause initial disturbances. J Math Biol 22:259–277

    Google Scholar 

  • Barnes MM (1959) Radiotracer labelling of a natural tephritid population and flight range of the walnut husk fly. Ann Entomol Soc Am 52:90–92

    Google Scholar 

  • Barron AB (2000) Anaesthetising Drosophila for behavioural studies. J Insect Physiol 46:439–442

    CAS  PubMed  Google Scholar 

  • Barry JD, Dowell RV, Morse JG (2002) Comparison of two sterile Mediterranean fruit fly (Diptera: Tephritidae) strains released in California’s preventative release program. J Econ Entomol 95:936–944

    PubMed  Google Scholar 

  • Bateman MA, Sonleitner FJ (1967) The ecology of a natural population of the Queensland fruit fly, Dacus tryoni. I. The parameters of the pupal and adult populations during a single season. Aust J Zool 15:303–335

    Google Scholar 

  • Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561

    PubMed  Google Scholar 

  • Bloem KA, Bloem S, Chambers DL (1994) Field assessment of quality – release recapture of mass-reared Mediterranean fruit-flies (Diptera, Tephritidae) of different sizes. Environ Entomol 23:629–633

    Google Scholar 

  • Bohonak AJ (1999) Gene flow and population structure. Q Rev Biol 74:21–45

    CAS  PubMed  Google Scholar 

  • Boiteau G, Vincent C, Meloche F, Leskey TC (2010) Harmonic radar: assessing the impact of tag weight on walking activity of Colorado potato beetle, plum curculio, and western corn rootworm. J Econ Entomol 103:63–69

    CAS  PubMed  Google Scholar 

  • Boiteau G, Vincent C, Meloche F, Leskey T, Colpitts BG (2011) Harmonic radar: efficacy at detecting and recovering insects on agricultural host plants. Pest Manag Sci 67:213–219

    CAS  PubMed  Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206

    CAS  PubMed  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    PubMed  Google Scholar 

  • Boykin LM, Shatters RG Jr, Hall DG, Dean D, Beerli P (2010) Genetic variation of Anastrepha suspensa (Diptera: Tephritidae) in Florida and the Caribbean using microsatellite DNA markers. J Econ Entomol 103:2214–2222

    PubMed  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216

    Google Scholar 

  • Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943

    CAS  PubMed  Google Scholar 

  • Campbell AJ, Lynch AJ, Dominiak B, Nicol H (2009) Effects of radiation, dye, day of larval hopping and vibration on eclosion of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Gen Appl Entomol 38:49–53

    Google Scholar 

  • Cant ET, Smith AD, Reynolds DR, Osborne JL (2005) Tracking butterfly flight paths across the landscape with harmonic radar. Proc R Soc B 272:785–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540

    CAS  PubMed  Google Scholar 

  • Champion de Crespigny F, Wedell N (2008) The impact of anaesthetic technique on survival and fertility in Drosophila. Physiol Entomol 33:310–315

    Google Scholar 

  • Chapman MG (1982) Experimental analysis of the pattern of tethered flight in the Queensland fruit fly, Dacus tryoni. Physiol Entomol 7:143–150

    Google Scholar 

  • Clarke AR, Powell KS, Weldon CW, Taylor PW (2011) The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management? Ann Appl Biol 158:26–54

    Google Scholar 

  • Cunningham RT, Couey HM (1986) Mediterranean fruit fly (Diptera: Tephritidae): distance/response curves to trimedlure to measure trapping efficiency. Environ Entomol 15:71–74

    Google Scholar 

  • Dawson MN, Raskoff KA, Jacobs DK (1998) Field preservation of marine invertebrate tissue for DNA analyses. Mol Mar Biol Biotechnol 7:145–152

    CAS  PubMed  Google Scholar 

  • Dempster JP, Atkinson DA, French MC (1995) The spatial population-dynamics of insects exploiting a patchy food resource. 2. Movements between patches. Oecologia 104:354–362

    Google Scholar 

  • Díaz-Fleischer F, Arredondo J, Aluja M (2009a) Enriching early adult environment affects the copulation behaviour of a tephritid fly. J Exp Biol 212:2120–2127

    PubMed  Google Scholar 

  • Díaz-Fleischer F, Arredondo J, Flores S, Montoya P, Aluja M (2009b) There is no magic fruit fly trap: multiple biological factors influence the response of adult Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae) individuals to MultiLure traps baited with BioLure or NuLure. J Econ Entomol 102:86–94

    PubMed  Google Scholar 

  • Dominiak B (2012) Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann Entomol Soc Am 105:434–446

    Google Scholar 

  • Dominiak BC, Schinagl L, Nicol H (2000) Impact of fluorescent marker dyes on emergence of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Gen Appl Entomol 29:45–47

    Google Scholar 

  • Dominiak BC, Westcott AE, Barchia IM (2003) Release of sterile Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), at Sydney, Australia. Aust J Exp Agric 43:519–528

    Google Scholar 

  • Dominiak BC, Sundaralingam S, Jiang L, Jessup AJ, Barchia IM (2010) Impact of marker dye on adult eclosion and flight ability of mass produced Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Aust J Entomol 49:166–169

    Google Scholar 

  • Dominiak BC, Campbell AJ, Worsley P, Nicol HI (2011) Evaluation of three ground release methods for sterile Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Crop Prot 30:1541–1545

    Google Scholar 

  • Drew RAI, Hooper GHS (1983) Population studies of fruit flies (Diptera: Tephritidae) in southeast Queensland (Australia). Oecologia 56:153–159

    Google Scholar 

  • Drew RAI, Zalucki MP, Hooper GHS (1984) Ecological studies of Eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat. I. Temporal variation in abundance. Oecologia 64:267–272

    Google Scholar 

  • Eber S, Brandl R (1994) Ecological and genetic spatial patterns of Urophora cardui (Diptera: Tephritidae) as evidence for population structure and biogeographical processes. J Anim Ecol 63:187–199

    Google Scholar 

  • Eber S, Brandl R (1996) Metapopulation dynamics of the tephritid fly Urophora cardui: an evaluation of incidence-function model assumptions with field data. J Anim Ecol 65

    Google Scholar 

  • Eber S, Brandl R (1997) Genetic differentiation of the tephritid fly Urophora cardui in Europe as evidence for its biogeographical history. Mol Ecol 6:651–660

    Google Scholar 

  • Ekblom R, Galindo J (2010) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    PubMed Central  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization) (2006) Establishment of pest free areas for fruit flies (Tephritidae). ISPM No. 26: 15. FAO, Rome

    Google Scholar 

  • FAO/IAEA/USDA (Food and Agriculture Organization/International Atomic Energy Agency/United States Department of Agriculture) (2003) Manual for product quality control and shipping procedures for sterile mass-reared tephritid fruit flies, Version 5.0. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Fletcher BS (1973) The ecology of a natural population of the Queensland fruit fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust J Zool 21:541–565

    Google Scholar 

  • Fletcher BS (1974a) The ecology of a natural population of the Queensland fruit fly, Dacus tryoni. V. The dispersal of adults. Aust J Zool 21:541–565

    Google Scholar 

  • Fletcher BS (1974b) The ecology of a natural population of the Queensland fruit fly, Dacus tryoni. VI. Seasonal changes in fruit fly numbers in the areas surrounding the orchard. Aust J Zool 22:353–363

    Google Scholar 

  • Fletcher BS (1979) The overwintering survival of adults of the Queensland fruit fly, Dacus tryoni, under natural conditions. Aust J Zool 27:403–412

    Google Scholar 

  • Fletcher BS, Economopoulos AP (1976) Dispersal of normal and irradiated laboratory strains and wild strains of the olive fly Dacus oleae in an olive grove. Entomol Exp Appl 20:183–194

    Google Scholar 

  • Fletcher BS, Kapatos E (1981) Dispersal of the olive fly, Dacus oleae, during the summer period on Corfu. Entomol Exp Appl 29:1–8

    Google Scholar 

  • Franzén M, Nilsson SG (2007) What is the required minimum landscape size for dispersal studies? J Anim Ecol 76:1224–1230

    PubMed  Google Scholar 

  • Froerer KM, Peck SL, McQuate GT, Vargas RI, Jang EB, McInnis DO (2010) Long-distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: how far can they go? Am Entomol 56:88–95

    Google Scholar 

  • Froerer KM, Peck SL, McQuate GT (2011) Evaluation of readmission ink as a marker for dispersal studies with the Oriental fruit fly, Bactrocera dorsalis. J Insect Sci 11:125

    PubMed Central  PubMed  Google Scholar 

  • Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    CAS  PubMed  Google Scholar 

  • Gaskin T, Futerman P, Chapman T (2002) Increased density and male-male interactions reduce male longevity in the medfly, Ceratitis capitata. Anim Behav 63:121–129

    Google Scholar 

  • Gilchrist AS, Meats AW (2012) Factors affecting the dispersal of large-scale releases of the Queensland fruit fly, Bactrocera tryoni. J Appl Entomol 136:252–262

    Google Scholar 

  • Gui L-Y, Xiu-Qin H, Chuan-Ren L, Boiteau G (2011) Validation of harmonic radar tags to study movement of Chinese citrus fly. Can Entomol 143:415–422

    Google Scholar 

  • Gui L-Y, Boiteau G, Colpitts BG, MacKinley P, McCarthy PC (2012) Random movement pattern of fed and unfed adult Colorado potato beetles in bare-ground habitat. Agric Forest Entomol 14:59–68

    Google Scholar 

  • Haddad GG, Sun Y, Wyman RJ, Xu T (1997) Genetic basis of tolerance to O2 deprivation in Drosophila melanogaster. Proc Natl Acad Sci 94:10809–10812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagler JR (1997) Field retention of a novel mark-release-recapture method. Environ Entomol 26:1079–1086

    Google Scholar 

  • Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543

    CAS  PubMed  Google Scholar 

  • Hagler JR, Miller E (2002) An alternative to conventional insect marking procedures: detection of a protein mark on pink bollworm by ELISA. Entomol Exp Appl 103:1–9

    CAS  Google Scholar 

  • Hagler JR, Cohen AC, Bradley-Dunlop D, Enriques FJ (1992) New approach to mark insects for feeding and dispersal studies. Environ Entomol 21:20–25

    Google Scholar 

  • Halley JM, Dempster JP (1996) The spatial population dynamics of insects exploiting a patchy food resource: a model study of local persistence. J Appl Ecol 33:439–454

    Google Scholar 

  • Hamada R (1980) Studies on the dispersal behavior of melon flies, Dacus cucurbitae Coquillett (Diptera: Tephritidae), and the influence of gamma-irradiation on dispersal. Appl Entomol Zool 15:363–371

    Google Scholar 

  • Hassall C, Thompson DJ (2012) Study design and mark-recapture estimates of dispersal: a case study with the endangered damselfly Coenagrion mercuriale. J Insect Conserv 16:111–120

    Google Scholar 

  • Hernández E, Orozco D, Breceda SF, Dominguez J (2007) Dispersal and longevity of wild and mass-reared Anastrepha ludens and Anastrepha obliqua (Diptera : Tephritidae). Fla Entomol 90:123–135

    Google Scholar 

  • Hoelmer KA, Kirk AA, Pickett CH, Daane KM, Johnson MW (2011) Prospects for improving biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), with introduced parasitoids (Hymenoptera). Biocontrol Sci Technol 21:1005–1025

    Google Scholar 

  • Iwahashi O (1972) Movement of the Oriental fruit fly adults among islets of the Ogasawara Islands. Environ Entomol 1:176–179

    Google Scholar 

  • Iwahashi O (1977) Eradication of the melon fly, Dacus cucurbitae, from Kume Is., Okinawa with the sterile insect release method. Res Popul Ecol 19:87–98

    Google Scholar 

  • Iwaizumi R, Shiga M (1989) Spatial relationship between wild and released sterile melon flies, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl Entomol Zool 24:147–149

    Google Scholar 

  • Jannson A (1992) Distribution and dispersal of Urophora cardui (Diptera: Tephritidae) in Finland in 1985–1991. Entomologia Fennica 2:211–216

    Google Scholar 

  • Jenkins DA, Kendra PE, van Bloem S, Whitmire S, Mizell R III, Goenaga R (2013) Forest fragments as barriers to fruit fly dispersal: Anastrepha (Diptera: Tephritidae) populations in orchards and adjacent forest fragments in Puerto Rico. Environ Entomol 42:283–292

    PubMed  Google Scholar 

  • Jones SC, Wallace L (1955) Cherry fruit fly dispersion studies. J Econ Entomol 48:616

    Google Scholar 

  • Jones VP, Hagler JR, Brunner JF, Baker CC, Wilburn TD (2006) An inexpensive immunomarking technique for studying movement patterns of naturally occurring insect populations. Environ Entomol 35:827–836

    Google Scholar 

  • Karsten M, van Vuuren BJ, Barnaud A, Terblanche JS (2013) Population genetics of Ceratitis capitata in South Africa: implications for dispersal and pest management. PLoS One 8:e54281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai A, Iwahashi O, Itô Y (1978) Movement of the sterilized melon fly from Kume Is. to adjacent islets. Appl Entomol Zool 13:314–315

    Google Scholar 

  • Kendra PE, Epsky ND, Heath RR (2010) Effective sampling range of food-based attractants for female Anastrepha suspensa (Diptera: Tephritidae). J Econ Entomol 103:533–540

    PubMed  Google Scholar 

  • Khamis FM, Karam N, Ekesi S, De Meyer M, Bonomi A, Gomulski LM, Scolari F, Gabrieli P, Siciliano P, Masiga D, Kenya EU, Gasperi G, Malacrida AR, Guglielmino CR (2009) Uncovering the tracks of a recent and rapid invasion: the case of the fruit fly pest Bactrocera invadens (Diptera: Tephritidae) in Africa. Mol Ecol 18:4798–4810

    CAS  PubMed  Google Scholar 

  • Kirk H, Dorn S, Mazzi D (2013) Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evol Appl 6:842–856

    CAS  Google Scholar 

  • Knipling EF (1959) Sterile-male method of population control. Science 130:902–904

    CAS  PubMed  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    CAS  PubMed  Google Scholar 

  • Kourti A (2004) Estimates of gene flow from rare alleles in natural populations of medfly Ceratitis capitata (Diptera: Tephritidae). Bull Entomol Res 94:449–456

    CAS  PubMed  Google Scholar 

  • Kovaleski A, Sugayama RL, Malavasi A (1999) Movement of Anastrepha fraterculus from native breeding sites into apple orchards in Southern Brazil. Entomol Exp Appl 91:457–463

    Google Scholar 

  • Krosch MN, Schutze MK, Armstrong KF, Boontop Y, Boykin LM, Chapman TA, Englezou A, Cameron SL, Clarke AR (2013) Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis s.l. (Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst Entomol 38:2–13

    Google Scholar 

  • Lance DR, Gates DB (1994) Sensitivity of detection trapping systems for Mediterranean fruit flies (Diptera: Tephritidae) in southern California. J Econ Entomol 87:1377–1383

    Google Scholar 

  • Landguth EL, Fedy BC, Oyler‐McCance SJ, Garey AL, Emel SL, Mumma M, Wagner HH, Fortin M-J, Cushman SA (2012) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12:276–284

    Google Scholar 

  • Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302

    Google Scholar 

  • Le Galliard JF, Massot M, Clobert J (2012) Dispersal and range dynamics in changing climates: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM, Ducatez S (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 317–336

    Google Scholar 

  • Le Roux J, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Google Scholar 

  • Liu Y, Zhang J, Richards MA, Pham BL, Roe P, Clarke AR (2009) Towards continuous surveillance of fruit flies using sensor networks and machine vision. In: Proceedings of the 5th international conference on wireless communications, networking and mobile computing, Beijing, 24–26 September 2009

    Google Scholar 

  • Loxdale HD, Lushai G (2001) Use of genetic diversity in movement studies of flying insects. In: Woiwood IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CABI, Wallingford, pp 361–386

    Google Scholar 

  • Macfarlane JR, East RW, Drew RAI, Betlinski GA (1987) Dispersal of irradiated Queensland fruit flies, Dacus tryoni (Froggatt) (Diptera: Tephritidae), in south-eastern Australia. Aust J Zool 35:275–281

    Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    PubMed  Google Scholar 

  • Manoukis NC, Jang EB (2013) The diurnal rhythmicity of Bactrocera cucurbitae (Diptera: Tephritidae) attraction to cuelure: insights from an interruptable lure and computer vision. Ann Entomol Soc Am 106:136–142

    Google Scholar 

  • Manrakhan A, Venter J-H, Hattingh V (2009) Combating the African invader fly Bactrocera invadens Drew, Tsuruta & White, The African Invader Action Plan. Online at: http://www.citrusres.com/

  • Maxwell CW, Parsons EC (1968) The recapture of marked apple maggot adults in several orchards from one release point. J Econ Entomol 61:1157–1159

    Google Scholar 

  • McInnis DO, Rendon P, Komatsu J (2002) Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: individual fly marking in field cages. Fla Entomol 85:126–137

    Google Scholar 

  • Meats A (1998a) Cartesian methods of locating spot infestations of the papaya fruit fly Bactrocera papayae Drew and Hancock within the trapping grid at Mareeba, Queensland, Australia. Gen Appl Entomol 28:57–60

    Google Scholar 

  • Meats A (1998b) The power of trapping grids for detecting and estimating the size of invading propagules of the Queensland fruit fly and risks of subsequent infestations. Gen Appl Entomol 28:47–55

    Google Scholar 

  • Meats A (2007) Dispersion of fruit flies (Diptera: Tephritidae) at high and low densities and consequences of mismatching dispersions of wild and sterile flies. Fla Entomol 90:136–146

    Google Scholar 

  • Meats A, Clift AD (2005) Zero catch criteria for declaring eradication of tephritid fruit flies: the probabilities. Aust J Exp Agric 45:1335–1340

    Google Scholar 

  • Meats A, Edgerton JE (2008) Short- and long-range dispersal of the Queensland fruit fly, Bactrocera tryoni and its relevance to invasive potential, sterile insect technique and surveillance trapping. Aust J Exp Agric 48:1237–1245

    Google Scholar 

  • Meats A, Smallridge CJ (2007) Short‐and long‐range dispersal of medfly, Ceratitis capitata (Dipt., Tephritidae), and its invasive potential. J Appl Entomol 131:518–523

    Google Scholar 

  • Meats A, Maheswaran P, Frommer M, Sved J (2002) Towards a male-only release system for SIT with the Queensland fruit fly, Bactrocera tryoni, using a genetic sexing strain with a temperature-sensitive lethal mutation. Genetica 116:97–106

    CAS  PubMed  Google Scholar 

  • Meats AW, Duthie R, Clift AD, Dominiak BC (2003) Trials on variants of the sterile insect technique (SIT) for suppression of populations of the Queensland fruit fly in small towns neighbouring a quarantine (exclusion) zone. Aust J Exp Agric 43:389–395

    Google Scholar 

  • Meats A, Smallridge CJ, Dominiak BC (2006) Dispersion theory and the sterile insect technique: application to two species of fruit fly. Entomol Exp Appl 119:247–254

    Google Scholar 

  • Miyahara Y, Kawai A (1979) Movement of sterilized melon fly from Kume Is. to the Amami Islands. Appl Entomol Zool 14:496–497

    Google Scholar 

  • Monro J, Richardson NL (1969) Traps, male lures, and a warning system for Queensland fruit fly, Dacus tryoni (Frogg.) (Diptera: Trypetidae). Aust J Agr Res 20:325–338

    Google Scholar 

  • Murphy MA, Waits LP, Kendall KC, Wasser SK, Higbee JA, Bogden R (2002) An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conserv Genet 3:435–440

    CAS  Google Scholar 

  • Nakamori H, Soemori H (1981) Comparison of dispersal ability and longevity for wild and mass-reared melon flies, Dacus cucurbitae Coquillett (Diptera: Tephritidae), under field conditions. Appl Entomol Zool 16:321–327

    Google Scholar 

  • Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738

    CAS  PubMed  Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273

    Google Scholar 

  • Neilson WT (1971) Dispersal studies of a natural population of apple maggot adults. J Econ Entomol 64:648–653

    Google Scholar 

  • Norris KR (1957) A method of marking Calliphoridae (Diptera) during emergence from the puparium. Nature 180:1002

    Google Scholar 

  • Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Heidelberg

    Google Scholar 

  • Osborne JL, Loxdale HD, Woiwod IP (2002) Monitoring insect dispersal: methods and approaches. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology: the 42nd symposium of the British Ecological Society. Blackwell Publishing, Oxford, pp 24–49

    Google Scholar 

  • Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Niitepold K, Hanski I (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Natl Acad Sci 105:19090–19095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papadopoulos NT, Plant RE, Carey JR (2013) From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies. Proc R Soc B 280:20131466

    PubMed Central  PubMed  Google Scholar 

  • Paranhos BJ, Papadopoulos NT, McInnis D, Gava C, Lopes FSC, Morelli R, Malavasi A (2010) Field dispersal and survival of sterile medfly males aromatically treated with ginger root oil. Environ Entomol 39:570–575

    PubMed  Google Scholar 

  • Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA (1998) What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79:361–382

    Google Scholar 

  • Pavlacky DC, Goldizen AW, Prentis PJ, Nicholls JA, Lowe AJ (2009) A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Mol Ecol 18:2945–2960

    PubMed  Google Scholar 

  • Peck SL, McQuate GT (2004) Ecological aspects of Bactrocera latifrons (Diptera: Tephritidae) on Maui, Hawaii: movement and host preference. Environ Entomol 33:1722–1731

    Google Scholar 

  • Peck SL, McQuate GT, Vargas RI, Seager DC, Revis HC, Jang EB, McInnis DO (2005) Movement of sterile male Bactrocera cucurbitae (Diptera: Tephritidae) in a Hawaiian agroecosystem. J Econ Entomol 98:1539–1550

    PubMed  Google Scholar 

  • Peterson MA, Denno RF (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152:428–446

    CAS  PubMed  Google Scholar 

  • Phipps CR, Dirks CO (1932) Dispersal of the apple maggot. J Econ Entomol 25:576–582

    Google Scholar 

  • Phipps CR, Dirks CO (1933) Dispersal of the apple maggot – 1932 studies. J Econ Entomol 26:344–349

    Google Scholar 

  • Plant RE, Cunningham RT (1991) Analyses of the dispersal of sterile Mediterranean fruit-flies (Diptera, Tephritidae) released from a point-source. Environ Entomol 20:1493–1503

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prugnolle F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    CAS  PubMed  Google Scholar 

  • Raybould AF, Clarke RT, Bond JM, Welters RE, Gliddon CJ (2001) Inferring patterns of dispersal from allele frequency data. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology: the 42nd symposium of the British Ecological Society. Blackwell Publishing, Oxford, pp 89–110

    Google Scholar 

  • Rempoulakis P, Nestel D (2012) Dispersal ability of marked, irradiated olive fruit flies [Bactrocera oleae (Rossi) (Diptera: Tephritidae) in arid regions. J Appl Entomol 136:171–180

    Google Scholar 

  • Reynolds DR, Riley JR (2002) Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput Electron Agric 35:271–307

    Google Scholar 

  • Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 210:3763–3770

    PubMed  Google Scholar 

  • Riley JR, Smith AD (2002) Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput Electron Agric 35:151–169

    Google Scholar 

  • Robacker DC, Mangan RL, Moreno DS, Tarshis Moreno AM (1991) Mating behavior and male mating success in wild Anastrepha ludens (Diptera: Tephritidae) on a field-caged host tree. J Insect Behav 4:471–487

    Google Scholar 

  • Rousse P, Duyck PF, Quilici S, Ryckewaert P (2005) Adjustment of field cage methodology for testing food attractants for fruit flies (Diptera: Tephritidae). Ann Entomol Soc Am 98:402–408

    Google Scholar 

  • Schneider CW, Tautz J, Grünewald B, Fuchs S (2012) Tracking of sublethal effects of two neonicotinoid insecticides on the foraging behaviour of Apis mellifera. PLoS One 7:e30023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder WJ, Mitchell WC (1981) Marking Tephritidae fruit fly adults in Hawaii for release-recovery studies. Proc Hawaii Entomol Soc 23:437–440

    Google Scholar 

  • Schroeder WJ, Mitchell WC, Miyabara RY (1974) Dye-induced changes in melon fly behavior. Environ Entomol 3:571

    CAS  Google Scholar 

  • Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomic A, Cameron SL, Hailstones D, Clarke AR (2012) Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data. BMC Evol Biol 12:130. doi:10.1186/1471-2148-1112-1130

    PubMed Central  PubMed  Google Scholar 

  • Senger SE, Tyson R, Roitberg BD, Thistlewood HMA, Harestad AS, Chandler MT (2009) Influence of habitat structure and resource availability on the movements of Rhagoletis indifferens (Diptera: Tephritidae). Environ Entomol 38:823–835

    CAS  PubMed  Google Scholar 

  • Severin HHP, Hartung WJ (1912) The flight of two thousand marked male Mediterranean fruit flies (Ceratitis capitata Wied.). Ann Entomol Soc Am 5:400–407

    Google Scholar 

  • Sharp JL, Ashley TR (1984) Chemicals tested as internal dye markers for the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae). Fla Entomol 67:575–577

    Google Scholar 

  • Shelly T, Edu J (2010) Mark-release-recapture of males of Bactrocera cucurbitae and B. dorsalis (Diptera: Tephritidae) in two residential areas of Honolulu. J Asia-Pacific Entomol 13:131–137

    Google Scholar 

  • Shelly TE, Nishimoto J (2011) Additional measurements of distance-dependent capture probabilities for released males of Bactrocera cucurbitae and B. dorsalis (Diptera: Tephritidae) in Honolulu. J Asia-Pacific Entomol 14:271–276

    Google Scholar 

  • Shelly T, Nishimoto JI, Diaz A, Leathers J, War M, Shoemaker R, Al-Zubaidy M, Joseph D (2010) Capture probability of release males of two Bactrocera species (Diptera: Tephritidae) in detection traps in California. J Econ Entomol 103:2042–2051

    CAS  PubMed  Google Scholar 

  • Skarpaas O, Shea K, Bullock JM (2005) Optimizing dispersal study design by Monte Carlo simulation. J Appl Ecol 42:731–739

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Google Scholar 

  • Sonleitner FJ, Bateman MA (1963) Mark-recapture analysis of a population of Queensland fruit-fly, Dacus tryoni (Frogg.) in an orchard. J Anim Ecol 32:259–269

    Google Scholar 

  • Southwood TRE (1978) Ecological methods: with particular reference to the study of insect populations, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Steiner LF (1965) A rapid method for identifying dye-marked fruit flies. J Econ Entomol 58:374–375

    Google Scholar 

  • Steiner LF (1969) A method of estimating the size of native populations of Oriental, melon, and Mediterranean fruit flies, to establish the overflooding ratios required for sterile-male releases. J Econ Entomol 62:4–7

    Google Scholar 

  • Steiner LF, Rowher GG, Ayers EL, Christenson LD (1961) The role of attractants in the recent Mediterranean fruit fly eradication program in Florida. J Econ Entomol 54:30–35

    Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Demelle E, Vierling L, Waits LP (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142

    CAS  PubMed  Google Scholar 

  • Streit S, Bock F, Pirk CWW, Tautz J (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106:169–171

    PubMed  Google Scholar 

  • Svensson GP, Sahlin U, Brage B, Larsson MC (2011) Should I stay of should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry: a case study on the threatened hermit beetle Osmoderma eremita. Biodivers Conserv 20:2883–2902

    Google Scholar 

  • Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour 12:377–388

    CAS  PubMed  Google Scholar 

  • Thomas DB, Loera-Gallardo J (1998) Dispersal and longevity of mass-released, sterilized Mexican fruit flies (Diptera: Tephritidae). Environ Entomol 27:1045–1052

    Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modelling population redistribution in animals and plants. Sinauer Associates, Sunderland

    Google Scholar 

  • Turchin P, Thoeny WT (1993) Quantifying dispersal of southern pine beetles with mark-recapture experiments and a diffusion model. Ecol Appl 3:187–198

    Google Scholar 

  • Vandewoestijne S, Baguette M (2004) Demographic versus genetic dispersal measures. Popul Ecol 46:281–285

    Google Scholar 

  • Vargas RI, Whitehand L, Walsh WA, Spencer JP, Hsu C-L (1995) Aerial releases of sterile Mediterranean fruit fly (Diptera: Tephritidae) by helicopter: dispersal, recovery, and population suppression. J Econ Entomol 88:1279–1287

    Google Scholar 

  • Wakid AM, Shoukry A (1976) Dispersal and flight range of the Mediterranean fruit fly, Ceratitis capitata Wied. in Egypt. Zeitschrift für Angewandte Entomologie 81:214–218

    Google Scholar 

  • Weldon CW (2005) Marking Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) with fluorescent pigments: pupal emergence, adult mortality, and visibility and persistence of marks. Gen Appl Entomol 34:7–13

    Google Scholar 

  • Weldon C, Meats A (2007) Short-range dispersal of recently emerged males and females of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) monitored by sticky sphere traps baited with protein and Lynfield traps baited with cue-lure. Aust J Entomol 46:160–166

    Google Scholar 

  • Weldon C, Meats A (2010) Dispersal of mass-reared sterile, laboratory-domesticated and wild male Queensland fruit flies. J Appl Entomol 134:16–25

    Google Scholar 

  • Whitehead MR, Peakall R (2012) Microdot technology for individual marking of small arthropods. Agric Forest Entomol 14:171–175

    Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST ≠ 1/(4 Nm +1). Heredity 82:117–125

    PubMed  Google Scholar 

  • Wong TTY, Whitehand LC, Kobayashi RM, Ohinata K, Tanaka N, Harris EJ (1982) Mediterranean fruit fly: dispersal of wild and irradiated and untreated laboratory-reared males. Environ Entomol 11:339–343

    Google Scholar 

  • Zhang D-X, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120

    Google Scholar 

  • Zhao JT, Frommer M, Sved JA, Gillies CB (2003) Genetic and molecular markers of the Queensland fruit fly, Bactrocera tryoni. J Hered 94:416–420

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Weldon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weldon, C.W., Schutze, M.K., Karsten, M. (2014). Trapping to Monitor Tephritid Movement: Results, Best Practice, and Assessment of Alternatives. In: Shelly, T., Epsky, N., Jang, E., Reyes-Flores, J., Vargas, R. (eds) Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9193-9_6

Download citation

Publish with us

Policies and ethics