Skip to main content

Detection of Genetic Alterations by Nucleic Acid Analysis: Use of PCR and Mass Spectroscopy-Based Methods

  • Chapter
  • First Online:
  • 1087 Accesses

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 5))

Abstract

Cell free circulating DNA, isolated from blood has emerged as a potential biomarker in oncology. There has been also considerable progress towards theranostic application of circulating DNA. These applications were enabled by the increased use of the PCR technique and its derivates. PCR assays have become a widely used method for the quantification of circulating DNA in either plasma or serum samples. Moreover, PCR amplification is the basic method implicated in the majority of the circulating DNA analytical methods. This review focuses on the PCR and Mass-spectrometry methods developed to detect circulating DNA alteration from blood, in evolving applications such as cancer diagnostic tools. This review also gives advices and guidelines for designing PCR experiments with the specific requirements of circulating DNA. The concentration of circulating DNA, especially mutant circulating DNA, fragments can be too low for accurate measurements with other spectrophotometric methods. However, the accuracy, the high through-put and multiplexing capabilities of mass spectrometry becomes an interesting tool for the quantification as well as for the characterization of circulating DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tse C, Capeau J (2003) Real time PCR methodology for quantification of nucleic acids. Ann Biol Clin (Paris) 61(3):279–293

    CAS  Google Scholar 

  2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  3. Bustin SA, Mueller R (2006) Real-time reverse transcription PCR and the detection of occult disease in colorectal cancer. Mol Aspects Med 27(2–3):192–223

    Article  CAS  PubMed  Google Scholar 

  4. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    Article  CAS  PubMed  Google Scholar 

  5. Bernard P, Wittwer CT (2002) Real-time PCR technology for cancer diagnostics. Clin Chem 48(8):1178–1185

    CAS  PubMed  Google Scholar 

  6. Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC, Roden R, Sokoll LJ, Chan DW, Shih IM (2003) Increased plasma DNA integrity in cancer patients. Cancer Res 63:3966–3968

    CAS  PubMed  Google Scholar 

  7. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276

    Article  CAS  PubMed  Google Scholar 

  8. Deligezer U, Eralp Y, Akisik EE, Akisik EZ, Saip P, Topuz E, Dalay N (2008) Size distribution of circulating cell-free DNA in sera of breast cancer patients in the course of adjuvant chemotherapy. Clin Chem Lab Med 46(3):311–317. doi:10.1515/CCLM.2008.080

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt B, Weickmann S, Witt C, Fleischhacker M (2008) Integrity du plasma sans cellule ADN dans les patients présentant le cancer de poumon et l’affection pulmonaire bénigne. Ann N Y Acad Sci 1137:207–213

    Article  CAS  PubMed  Google Scholar 

  10. Ellinger J, Albers P, Müller SC, von Ruecker A, Bastian PJ (2009) Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker. BJU Int 104:48–52

    Article  CAS  PubMed  Google Scholar 

  11. Ellinger J, Müller DC, Müller SC, Hauser S, Heukamp LC, von Ruecker A, Bastian PJ, Walgenbach-Brunagel G (2012) Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol Oncol 30(4):509–515

    Article  CAS  PubMed  Google Scholar 

  12. Ellinger J, Bastian PJ, Ellinger N, Kahl P, Perabo FG, Büttner R, Müller SC, von Ruecker A (2008) Apoptotic fragments in serum of patients with muscle invasive bladder cancer: a prognostic entity. Cancer Lett 264:274–280

    Article  CAS  PubMed  Google Scholar 

  13. Ellinger J, Wittkamp V, Albers P, Perabo FG, Mueller SC, von Ruecker A, Bastian PJ (2009) Cell-free circulating DNA: Diagnostic value in patients with testicular germ cell cancer. J Urol 181:363–371

    Article  CAS  PubMed  Google Scholar 

  14. Holdenrieder S, Burges A, Reich O, Spelsberg FW, Stieber P (2008) DNA integrity in plasma and serum of patients with malignant and benign diseases. Ann N Y Acad Sci 1137:162–170. doi:10.1196/annals.1448.013

    Article  CAS  PubMed  Google Scholar 

  15. Chan KC, Zhang J, Hui AB, Wong N, Lau TK, Leung TN, Lo KW, Huang DW, Lo YM (2004) Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 50(1):88–92

    Article  CAS  PubMed  Google Scholar 

  16. Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, Gongora C, Thierry AR (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6(9):e23418. doi:10.1371/journal.pone.0023418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lo YM, Leung TN, Tein MS, Sargent IL, Zhang J, Lau TK, Haines CJ, Redman CW (1999) Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem 45:184–188

    CAS  PubMed  Google Scholar 

  18. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  19. Little S (2001) Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet Chapter 9:Unit 9.8. doi:10.1002/0471142905.hg0908s07

  20. Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, Dearden SP, Morris C, Ranson M, Cantarini MV, Dive C, Hughes A (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 101:1724–1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Morlan J, Baker J, Sinicropi D (2009) Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS One 4(2):e4584. doi:10.1371/journal.pone.0004584

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR (2014) Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol 8(5):927–941. doi:10.106/j.molonc.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  23. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F, Gillet B, Gongora C, Dechelotte P, Robert B, Del Rio M, Lamy PJ, Bibeau F, Nouaille M, Loriot V, Jarrousse AS, Molina F, Mathonnet M, Pezet D, Ychou M (2014) Detection of KRAS and BRAF point mutations from circulating DNA analysis and concordance with tumor-tissue analysis in metastatic colorectal cancer. Nature Med 20(4):430–435

    Google Scholar 

  24. Liu Q, Sommer SS (2000) Pyrophosphorolysis activated polymerization (PAP): application to allele-specific amplification. Biotechniques 29:1072–1083

    CAS  PubMed  Google Scholar 

  25. Liu Q, Sommer SS (2004) Detection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A): measurement of mutation load in mammalian tissues. Biotechniques 36:156–166

    CAS  PubMed  Google Scholar 

  26. Madic J, Piperno-Neumann S, Servois V, Rampanou A, Milder M, Trouiller B, Gentien D, Saada S, Assayag F, Thuleau A, Nemati F, Decaudin D, Bidard FC, Desjardins L, Mariani P, Lantz O, Stern MH (2012) Pyrophosphorolysis-Activated Polymerization Detects Circulating Tumor DNA in Metastatic Uveal Melanoma. Clin Cancer Res 18:3934–3941. doi:10.1158/1078-0432.CCR-12-0309

    Article  CAS  PubMed  Google Scholar 

  27. Dabritz J, Hanfler J, Preston R, Stieler J, Oettle H (2005) Detection of Ki-ras mutations in tissue and plasma samples of patients with pancreatic cancer using PNA-mediated PCR clamping and hybridisation probes. Br J Cancer 92:405–412

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236–9241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59(12):1722–1731

    Article  CAS  PubMed  Google Scholar 

  31. Milbury CA, Chen CC, Mamon H, Liu P, Santagata S, Makrigiorgos GM (2011) Multiplex amplification coupled with COLD-PCR and high resolution melting enables identification of low-abundance mutations in cancer samples with low DNA content. J Mol Diagn 13(2):220–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Milbury CA, Li J, Makrigiorgos GM (2009) COLD-PCR-enhanced high-resolution melting enables rapid and selective identification of low-level unknown mutations. Clin Chem 55:2130–2143. doi:10.1373/clinchem.2009.131029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Guha M, Castellanos-Rizaldos E, Liu P, Mamon H, Makrigiorgos GM (2013) Differential strand separation at critical temperature: a minimally disruptive enrichment method for low-abundance unknown DNA mutations. Nucleic Acids Res 41(3):e50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA Jr, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3:551–559

    Article  CAS  PubMed  Google Scholar 

  36. Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S, Powers P, Zorzi J, Jeter SC, Oliver GR, Fetting J, Emens L, Riley C, Stearns V, Diehl F, Angenendt P, Huang P, Cope L, Argani P, Murphy KM, Bachman KE, Greshock J, Wolff AC, Park BH (2012) Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res 18:3462–3469. doi:10.1158/1078-0432.CCR-11-2696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mouliere F, El Messaoudi S, Gongora C, Guedj AS, Robert B, Del Rio M, Molina F, Lamy PJ, Lopez-Crapez E, Mathonnet M, Ychou M, Pezet D, Thierry AR (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 6(3):319–328

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bidard FC, Weigelt B, Reis-Filho JS (2013) Going with the flow: from circulating tumor cells to DNA. Sci Transl Med 5(207):207ps14

    Article  PubMed  Google Scholar 

  39. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA Jr (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra68

    Article  PubMed  Google Scholar 

  41. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112

    Article  CAS  PubMed  Google Scholar 

  42. Whale AS, Hugget JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40(11):e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Taly V, Pekin D, El Abed A, Laurent-Puig P (2012) Detecting biomarkers with microdroplet technology. Trends Mol Med 18(7):405–416

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Wang L, Janne PA, Makrigiorgos GM (2008) Coamplification at lower denaturation temperature-PCR increases mutation-detection selectivity of TaqMan-based real-time PCR. Clin Chem 55(4):748–756

    Article  Google Scholar 

  45. Guha M, Castellanos-Rizaldos E, Makrigiorgos GM (2013) DISSECT method using PNA-LNA clamp improves detection of T790m mutation. PLoS One 8(6):e67782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Salvianti F, Pinzani P, Verderio P, Ciniselli CM, Massi D, De Giorgi V, Grazzini M, Pazzagli M, Orlando C (2012) Multiparametric analysis of cell-free DNA in melanoma patients. PLoS One 7(11):e49843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Eng J Med 368(13):1199–1209

    Article  CAS  Google Scholar 

  48. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O’Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA Jr, Velculescu VE (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 4(162):162ra154

    Article  PubMed Central  PubMed  Google Scholar 

  49. van der Vaart M, Pretorius PJ (2010) Is the role of circulating DNA as a biomarker of cancer being prematurely overrated? Clin Biochem 43(1–2):26–36. doi:10.1016/j.clinbiochem.2009.08.027

    Article  PubMed  Google Scholar 

  50. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59(6):892–902

    Article  CAS  PubMed  Google Scholar 

  51. Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339(6221):237–238

    Article  CAS  PubMed  Google Scholar 

  52. Aslanzadeh J (2004) Preventing PCR amplification carryover contamination in a clinical laboratory. Ann Clin Lab Sci 34(4):389–389

    CAS  PubMed  Google Scholar 

  53. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor CR, Chiu RW (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2(61):61ra91. doi:10.1126/scitranslmed.3001720

    Article  CAS  PubMed  Google Scholar 

  54. Mouliere F, El Messaoudi S, Gongora C, Lamy PJ, del Rio M, Lopez-Crapez E, Gillet B, Mathonnet M, Pezet D, Ychou M, Thierry AR (2013) Personalized medicine by analyzing circulating DNA: application to the management care of colorectal cancer patients. Ann Oncol 24(Suppl1):i7–i17. doi:10.1093/annonc/mdt042.29

    Google Scholar 

  55. Spindler KL, Pallisgaard N, Vogellus I, Jakobsen A (2012) Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res 18(4):1177–1185. doi:10.1158/1078-0432.CCR-11-0564

  56. Perkins G, Yap TA, Pope L, Cassidy AM, Dukes JP, Riisnaes R, Massard C, Cassier PA, Miranda S, Clark J, Denholm KA, Thway K, Gonzalez De Castro D, Attard G, Molife LR, Kaye SB, Banerji U, de Bono JS (2012) Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS One 7:e47020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schwarzenbach H, Eichelser C, Kropidlowski J, Janni W, Rack B, Pantel K (2012) Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression. Clin Cancer Res 18:5719–5730

    Article  CAS  PubMed  Google Scholar 

  58. Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, Palmieri C, Cleator S, Walker RA, Coombes RC (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 22:220–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Mussolin L, Burnelli R, Pillon M, Carraro E, Farruggia P, Todesco A, Mascarin M, Rosolen A (2013) Plasma cell-free DNA in paediatric lymphomas. J Cancer 4:323–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. García-Olmo DC, Picazo MG, Toboso I, Asensio AI, García-Olmo D (2013) Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats. Mol Cancer 12:8–18

    Article  PubMed Central  PubMed  Google Scholar 

  61. Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, Shu Y (2012) Deregulated expression of miR-21, miR-143 and miR-181 in non small cell lung cancer is related to clinicopathologic characteristics or patient progress. Biomed Pharmacother 64(6):399–408

    Article  Google Scholar 

  62. Flamini E, Mercatali L, Nanni O, Calistri D, Nunziatini R, Zoli W, Rosetti P, Gardini N, Lattuneddu A, Verdecchia GM, Amadori D (2006) Free DNA and carcinoembryonic antigen serum levels: an important combination for diagnosis of colorectal cancer. Clin Cancer Res 12:6985–6988

    Article  CAS  PubMed  Google Scholar 

  63. Gal S, Fidler C, Lo YM, Taylor M, Han C, Moore J, Harris AL, Wainscoat JS (2004) Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. Br J Cancer 90:1211–1215. doi:10.1038/sj.bjc.6601609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Pinzani P, Salvianti F, Zaccara S, Massi D, De Giorgi V, Pazzagli M, Orlando C (2011) Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations. Clin Chim Acta 412(23–24):2141–2145. doi:10.1016/j.cca.2011.07.027

    Article  CAS  PubMed  Google Scholar 

  65. Rago C, Huso DL, Diehl F, Karim B, Liu G, Papadopoulos N, Samuels Y, Velculescu VE, Vogelstein B, Kinzler KW, Diaz LA Jr (2007) Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res 67(19):9364–9370

    Article  CAS  PubMed  Google Scholar 

  66. Gorges TM, Schiller J, Schmitz A, Schuetzmann D, Schatz C, Zollner TM, Krahn T, von Ahsen O (2012) Cancer therapy monitoring in xenografts by quantitative analysis of circulating tumor DNA. Biomarkers 17(6):498–506. doi:10.3109/1354750X.2012.689133

    Article  CAS  PubMed  Google Scholar 

  67. Saukkonen K, Lakkisto P, Pettilä V, Varpula M, Karlsson S, Ruokonen E, Pulkki K; Finnsepsis Study Group (2008) Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem 54(6):1000–1007. doi:10.1373/clinchem.2007.101030

  68. Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, Chari R, Shames DS, Tang X, MacAulay C, Varella-Garcia M, Vooder T, Wistuba II, Lam S, Brekken R, Toyooka S, Minna JD, Lam WL, Gazdar AF (2009) Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One 4(10):e7464. doi:10.1371/journal.pone.0007464

    Article  PubMed Central  PubMed  Google Scholar 

  69. Zhou L, Ying Wang Y, Wittwer CT (2011) Rare allele enrichment and detection by allele-specific PCR, competitive probe blocking, and melting analysis. Biotechniques 50:311–318

    CAS  Google Scholar 

  70. Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, Del Rio M, Molina F (2010) Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 38(18):6159–6175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Milbury CA, Li J, Makrigiorgos GM (2011) Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations. Nucleic Acids Res 39(1):e2

    Article  PubMed Central  PubMed  Google Scholar 

  72. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  73. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68

    Article  CAS  Google Scholar 

  74. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  75. Murray KK (1996) DNA sequencing by mass spectrometry. J Mass Spectrom 31:1203–1215

    Article  CAS  PubMed  Google Scholar 

  76. Edwards JR, Itagaki Y, Ju J (2001) DNA sequencing using biotinylated dideoxynucleotides and mass spectrometry. Nucleic Acids Res 29:e104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Liu Y, Sun X, Guo B (2003) Matrix-assisted laser desorption/ionization time-of-flight analysis of low-concentration oligonucleotides and mini-sequencing products. Rapid Commun Mass Spectrom 17:2354–2360

    Article  CAS  PubMed  Google Scholar 

  78. Monforte JA, Becker CH (1997) High-throughput DNA analysis by time-of-flight mass spectrometry. Nat Med 3:360–362

    Article  CAS  PubMed  Google Scholar 

  79. Nordhoff E, Luebbert C, Thiele G, Heiser V, Lehrach H (2000) Rapid determination of short DNA sequences by the use of MALDI-MS. Nucleic Acids Res 28:E86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Edwards JR, Ruparel H, Ju J (2005) Mass-spectrometry DNA sequencing. Mutat Res 573:3–12

    Article  CAS  PubMed  Google Scholar 

  81. Oberacher H, Pitterl F (2009) On the use of ESI-Qq TOF MS/MS for the comparative sequencing of nucleic acids. Biopolymers 91:401–409

    Article  CAS  PubMed  Google Scholar 

  82. Griffin TJ, Tang W, Smith LM (1997) Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry. Nat Biotechnol 15:1368–1372

    Article  CAS  PubMed  Google Scholar 

  83. Jurinke C, van den Boom D, Jacob A, Tang K, Wörl R, Köster H (1996) Analysis of ligase chain reaction products via matrix assisted laser desorption/ionization time-of-flight-mass spectrometry. Anal Biochem 237:174–181

    Article  CAS  PubMed  Google Scholar 

  84. Griffin TJ, Hall JG, Prudent JR, Smith LM (1999) Direct genetic analysis by matrix-assisted laser desorption/ionisation mass spectrometry. Proc Natl Acad Sci U S A 96:6301–6306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 60:2.12.1–2.12.18

    Google Scholar 

  86. Millis MP (2011) Medium-throughput SNP genotyping using mass spectrometry: multiplex SNP genotyping using the iPLEX® gold assay. In: DiStefano JK (ed) Disease gene identification: methods and protocols. Methods in molecular biology, vol 700. Springer. doi: 10.1007/978-1-61737-954-3_5

  87. MacConaill LE, Campbell CD, Kehoe SM, Bass AJ, Hatton C, Niu L, Davis M, Yao K, Hanna M, Mondal C, Luongo L, Emery CM, Baker AC, Philips J, Goff DJ, Fiorentino M, Rubin MA, Polyak K, Chan J, Wang Y, Fletcher JA, Santagata S, Corso G, Roviello F, Shivdasani R, Kieran MW, Ligon KL, Stiles CD, Hahn WC, Meyerson ML, Garraway LA (2009) Profiling critical cancer gene mutations in clinical tumor samples. PLoS One 4(11):e7887. doi:10.1371/journal.pone.0007887

    Article  PubMed Central  PubMed  Google Scholar 

  88. van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC, DeJesus-Hernandez M, Finch NA, Brown PH, Murray ME, Hsiung GY, Stewart H, Karydas AM, Finger E, Kertesz A, Bigio EH, Weintraub S, Mesulam M, Hatanpaa KJ, White CL 3rd, Strong MJ, Beach TG, Wszolek ZK, Lippa C, Caselli R, Petrucelli L, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Mackenzie IR, Seeley WW, Grinberg LT, Miller BL, Boylan KB, Graff-Radford NR, Boeve BF, Dickson DW, Rademakers R (2014) TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 127(3):397–406

    Google Scholar 

  89. Custodio A, Moreno-Rubio J, Aparicio J, Gallego-Plazas J, Yaya R, Maurel J, Higuera O, Burgos E, Ramos D, Calatrava A, Andrada E, López R, Moreno V, Madero R, Cejas P, Feliu J (2014) Pharmacogenetic predictors of severe peripheral neuropathy in colon cancer patients treated with oxaliplatin-based adjuvant chemotherapy: a GEMCAD group study. Ann Oncol 25(2):398–403

    Google Scholar 

  90. Wang J, Lu K, Song Y, Xie L, Zhao S, Wang Y, Sun W, Liu L, Zhao H, Tang D, Ma W, Pan B, Xuan Q, Liu H, Zhang Q (2013) Indications of clinical and genetic predictors for aromatase inhibitors related musculoskeletal adverse events in Chinese Han women with breast cancer. PLoS One 8(7):e68798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Ma XD, Cai GQ, Zou W, Huang YH, Zhang JR, Wang DT, Chen BL (2013) First evidence for the contribution of the genetic variations of BRCA1-interacting protein 1 (BRIP1) to the genetic susceptibility of cervical cancer. Gene 524(2):208–213

    Article  CAS  PubMed  Google Scholar 

  92. Esposito A, Bardelli A, Criscitiello C, Colombo N, Gelao L, Fumagalli L, Minchella I, Locatelli M, Goldhirsch A, Curigliano G (2013) Monitoring tumor-derived cell-free DNA in patients with solid tumors: clinical perspectives and research opportunities. Cancer Treat Rev 40:648–655

    Article  PubMed  Google Scholar 

  93. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR (2013) Circulating tumor cells and DNA as liquid biopsies. Genome Med 5(8):73

    Article  PubMed Central  PubMed  Google Scholar 

  94. Maier J, Lange T, Kerle I, Specht K, Bruegel M, Wickenhauser C, Jost P, Niederwieser D, Peschel C, Duyster J, von Bubnoff N (2013) Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin Cancer Res 19(17):4854–4867

    Article  CAS  PubMed  Google Scholar 

  95. Laken SJ, Jackson PE, Kinzler KW, Vogelstein B, Strickland PT, Groopman JD, Friesen MD (1998) Genotyping by mass spectrometric analysis of short DNA fragments. Nat Biotechnol 16(13):1352–1356

    Article  CAS  PubMed  Google Scholar 

  96. Kaaks R, Stattin P, Villar S, Poetsch AR, Dossus L, Nieters A, Riboli E, Palmqvist R, Hallmans G, Plass C, Friesen MD (2009) Insulin-like growth factor-II methylation status in lymphocyte DNA and colon cancer risk in the Northern Sweden Health and Disease cohort. Cancer Res 69(13):5400–5405

    Article  CAS  PubMed  Google Scholar 

  97. Ding C, Chiu RW, Lau TK, Leung TN, Chan LC, Chan AY, Charoenkwan P, Ng IS, Law HY, Ma ES, Xu X, Wanapirak C, Sanguansermsri T, Liao C, Ai MA, Chui DH, Cantor CR, Lo YM (2004) MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc Natl Acad Sci U S A 101(29):10762–10767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Tsang JC, Charoenkwan P, Chow KC, Jin Y, Wanapirak C, Sanguansermsri T, Lo YM, Chiu RW (2007) Mass spectrometry-based detection of hemoglobin E mutation by allele-specific base extension reaction. Clin Chem 53(12):2205–2209

    Article  CAS  PubMed  Google Scholar 

  99. Sharma VK, Vouros P, Glick J (2011) Mass spectrometric based analysis, characterization and applications of circulating cell free DNA isolated from human body fluids. Int J Mass Spectrom 304(2–3):172–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain R. Thierry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mouliere, F., Thierry, A.R., Larroque, C. (2015). Detection of Genetic Alterations by Nucleic Acid Analysis: Use of PCR and Mass Spectroscopy-Based Methods. In: Gahan, P. (eds) Circulating Nucleic Acids in Early Diagnosis, Prognosis and Treatment Monitoring. Advances in Predictive, Preventive and Personalised Medicine, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9168-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9168-7_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9167-0

  • Online ISBN: 978-94-017-9168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics