Circulating DNA and miRNA Isolation

Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 5)


Analysis of circulating nucleic acids undoubtedly represents a breakthrough in the diagnostic field and in predictive, preventive and personalized medicine. In order to adequately and systematically study and to transfer this approach into clinical practice, standardization of the pre-analytical steps is a crucial prerequisite. Thus, during the first pre-analytical step, it is critical to achieve nucleic acid extraction from blood cell free nucleic acid with the highest purity and yields. Optimization of isolation processes will lead to a low variation of measurements and sensitive quantification of these macromolecules that are often present at low concentration and sometimes are physically tightly associated with biological constituents in the blood. Various isolation methods are used, but ready to use extraction kits appear as a good compromise with respect to routine application, especially in a clinical setting. Improvement or high specificity of the circulating nucleic acid analysis might be possible with a better knowledge of their form and structure. The choice of the biological source (serum vs. plasma) is described in the previous chapter. Circulating DNA and microRNA were recently applied in clinical practice; their isolation methods are here described and discussed.


Circulating DNA/RNA mRNA microRNA Isolation Plasma Serum 



Anthony Laybats for bibliographical work and Mr Batbedat for his financial support. The work was granted from the Fondation de la Recherche sur le Cancer (ARC). A.R. Thierry is supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) (France).


  1. 1.
    Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665Google Scholar
  2. 2.
    Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P (2001) About the possible origin and mechanism of circulating DNA – apoptosis and active DNA release. Clin Chim Acta 313(1–2):139–142Google Scholar
  3. 3.
    van der Vaart M, Pretorius PJ (2007) The origin of circulating free DNA. Clin Chem 53(12):2215PubMedCrossRefGoogle Scholar
  4. 4.
    Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ (2012) Comparing the MicroRNA spectrum between serum and plasma. PLoS One 7:e41561Google Scholar
  5. 5.
    Gahan PB, Stroun M (2010) The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 28(7):529–538PubMedCrossRefGoogle Scholar
  6. 6.
    Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, Gongora C, Thierry AR (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6(9):e23418. doi: 10.1371/journal.pone.0023418
  7. 7.
    Mouliere F, El Messaoudi S, Gongora C, Guedj AS, Robert B, Del Rio M, Molina F, Lamy PJ, Lopez-Crapez E, Mathonnet M, Ychou M, Pezet D, Thierry AR (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 6(3):319–328Google Scholar
  8. 8.
    Fong SL, Zhang JT, Lim CK, Eu KW, Liu Y (2009) Comparison of 7 methods for extracting cell-free DNA from serum samples of colorectal cancer patients. Clin Chem 55(3):587–589Google Scholar
  9. 9.
    Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, Del Rio M, Molina F (2010) Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 38(18):6159–6175Google Scholar
  10. 10.
    Board RE, Williams VS, Knight L, Shaw J, Greystoke A, Ranson M, Dive C, Blackhall FH, Hughes A (2008) Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. In: Gahan PB, Swaminathan R (eds) Circulating nucleic acids in plasma and serum V, vol 1137. New York Academy of Sciences, Malden, pp 98–107Google Scholar
  11. 11.
    Lapaire O, Johnson KL, Bianchi DW (2008) Method for extraction of high-quantity and -quality cell-free DNA from amniotic fluid. Methods Mol Biol 444:303–308PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lecomte T, Berger A, Zinzindohoue F, Micard S, Landi B, Blons H, Beaune P, Cugnenc PH, Laurent-Puig P (2002) Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100(5):542–548Google Scholar
  13. 13.
    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209Google Scholar
  14. 14.
    Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540Google Scholar
  15. 15.
    Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536Google Scholar
  16. 16.
    Yuan H, Zhu ZZ, Lu Y, Liu F, Zhang W, Huang G, Zhu G, Jiang B (2012) A modified extraction method of circulating free DNA for epidermal growth factor receptor mutation analysis. Yonsei Med J 53(1):132–137Google Scholar
  17. 17.
    Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, Dearden SP, Morris C, Ranson M, Cantarini MV, Dive C, Hughes A (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 101(10):1724–1730Google Scholar
  18. 18.
    Lefebure B, Charbonnier F, Di Fiore F et al (2010) Prognostic value of circulating mutant DNA in unresectable metastatic colorectal cancer. Ann Surg 251(2):275–280PubMedCrossRefGoogle Scholar
  19. 19.
    García-Olmo DC, Picazo MG, Toboso I, Asensio AI, GarcÚa-Olmo D (2013) Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats. Mol Cancer 12:8Google Scholar
  20. 20.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006Google Scholar
  21. 21.
    Basnakian AG, James SJ (1994) A rapid and sensitive assay for the detection of DNA fragmentation during early phases of apoptosis. Nucleic Acids Res 22(13):2714–2715PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hahn T, Drese KS, O’Sullivan CK (2009) Microsystem for isolation of fetal DNA from maternal plasma by preparative size separation. Clin Chem 55(12):2144–2152PubMedCrossRefGoogle Scholar
  23. 23.
    deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grötzmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55(7):1337–1346Google Scholar
  24. 24.
    Phillips S, Mea GC (2009) A comparative study of DNA extraction methodologies: variation in DNA yield and effects on downstream PCR analysis. 61st Annual American Academic Forensic Science Meeting, Denver, COGoogle Scholar
  25. 25.
    Goldshtein H, Hausmann MJ, Douvdevani A (2009) A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids. Ann Clin Biochem 46(Pt 6):488–494PubMedCrossRefGoogle Scholar
  26. 26.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159PubMedCrossRefGoogle Scholar
  27. 27.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  28. 28.
    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710Google Scholar
  29. 29.
    Kloosterman WP, Plasterk RH (2006) The diverse functions of MicroRNAs in animal development and disease. Dev Cell 11:441–450PubMedCrossRefGoogle Scholar
  30. 30.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741Google Scholar
  31. 31.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518Google Scholar
  32. 32.
    Valadi H, Ekström K, Bossios A, Sj­strand M, Lee JJ, L­tvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659Google Scholar
  33. 33.
    Becker N, Lockwood CM (2013) Pre-analytical variables in miRNA analysis. Clin Biochem 46:861–868PubMedCrossRefGoogle Scholar
  34. 34.
    Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675Google Scholar
  35. 35.
    McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57:833–840Google Scholar
  36. 36.
    Page K, Guttery DS, Zahra N, Primrose L, Elshaw SR, Pringle JH, Blighe K, Marchese SD, Hills A, Woodley L, Stebbing J, Coombes RC, Shaw JA (2013) Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One 8:e77963Google Scholar
  37. 37.
    Köberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, B­nig H, Peveling-Oberhag J, Biondi RM, Zeuzem S, Kronenberger B, Waidmann O, Piiper A (2013) Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One 8:e75184Google Scholar
  38. 38.
    Sourvinou IS, Markou A, Lianidou ES (2013) Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn 15:827–834PubMedCrossRefGoogle Scholar
  39. 39.
    Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, GonzÃlez S, SÃnchez-Cabo F, GonzÃlez Mê, Bernad A, SÃnchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282Google Scholar
  40. 40.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233Google Scholar
  41. 41.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433Google Scholar
  42. 42.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008Google Scholar
  43. 43.
    Wang K, Zhang S, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259Google Scholar
  44. 44.
    Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, Ward J, Alao H, Kodys K, Szabo G (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56:1946–1957Google Scholar
  45. 45.
    Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Scholten D, Frey N, Koch A, Trautwein C, Tacke F, Luedde T (2013) Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One 8:e54612Google Scholar
  46. 46.
    Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, Goodman MT, Tait JF, Tewari M, Pritchard CC (2013) Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8:e64795Google Scholar
  47. 47.
    Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King A, Kirkby NS, Crosby-Nwaobi R, Prokopi M, Drozdov I, Langley SR, Sivaprasad S, Markus HS, Mitchell JA, Warner TD, Kiechl S, Mayr M (2013) Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 112:595–600Google Scholar
  48. 48.
    Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G (2013) The impact of hemolysis on cell-free microRNA biomarkers. Front Genet 4:94Google Scholar
  49. 49.
    Kim D-J, Linnstaedt S, Palma J et al (2012) Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn 14:71–80PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Häusler SF, Keller A, Chandran PA, Ziegler K, Zipp K, Heuer S, Krockenberger M, Engel JB, H­nig A, Scheffler M, Dietl J, Wischhusen J (2010) Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer 103:693–700Google Scholar
  51. 51.
    Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P, Meese E, Katus HA, Rottbauer W (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23Google Scholar
  52. 52.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lðsser C, L­tvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog J, ThÕry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360Google Scholar
  53. 53.
    Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS (2010) Direct serum assay for MicroRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91Google Scholar
  54. 54.
    Mraz M, Malinova K, Mayer J, Pospisilova S (2009) MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 390:1–4Google Scholar
  55. 55.
    Eldh M, Lötvall J, Malmhäll C, Ekström K (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50:278–286Google Scholar
  56. 56.
    McAlexander MA, Phillips MJ, Witwer KW (2013) Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet 4:83PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Jensen SG, Lamy P, Rasmussen MH, Ostenfeld MS, Dyrskj½t L, Orntoft TF, Andersen CL (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12:435Google Scholar
  58. 58.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301Google Scholar
  59. 59.
    Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, Dahlsveen IK (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IRCM-Institut de Recherche en Cancérologie de Montpellier, U896 INSERMMontpellierFrance
  2. 2.ICM-Institut de Cancérologie de MontpellierMontpellierFrance

Personalised recommendations