Skip to main content

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 5))

Abstract

Although nucleic acids have been known to circulate in the blood since 1948 their biology has been studied only since the 1960s. This chapter contains discussion of (a) the presence of DNA and RNA circulating in human plasma and serum from both healthy individuals and patients, (b) the amounts of DNA/RNA present together with the variables affecting these amounts, (c) possible sources of the DNA/RNA in blood and (d) the ability of the circulating nucleic acids to enter other cells and to modify the biology of the recipient cells. The relationship of the DNA from cancer patients is considered with respect to the formation of metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anker P, Stroun M, Maurice P (1975) Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res 35:2375–2382

    CAS  PubMed  Google Scholar 

  2. Rykova EY, Wunsche W, Brizgunova OE, Skvortsova TE, Tamkovich SN, Senin IS, Laktionov PP, Sczakiel G, Vlassov VV (2006) Concentrations of circulating RNA from healthy donors and cancer patients. Ann N Y Acad Sci 1075:328–333

    Google Scholar 

  3. Steinman CR (1975) Free DNA in serum and plasma from normal adults. J Clin Invest 56:512–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wu TL, Zhang D, Chia JH, Tsao KC, Sun CF, Wu JT (2002) Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta 321:77–87

    Google Scholar 

  5. Tamkovich SN, Cherepanova AV, Kolesnokova EV, Rykova EY, Pyshnyi DV, Vlassov VV, Laktionov PP (2006) Circulating DNA and DNase activity in human blood. Ann N Y Acad Sci 1075:191–196

    Google Scholar 

  6. Reddi KK, Holland JF (1976) Elevated serum ribonuclease in patients with pancreatic cancer. Proc Natl Acad Sci U S A 73:2308–2310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Leon SA, Shapiro B, Sklaroff D, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  8. Böttcher K, Wenzel A, Warnecke JM (2006) Investigation of the origin of extracellular RNA in human cell culture. Ann N Y Acad Sci 1075:50–56

    Article  PubMed  Google Scholar 

  9. Adams DH, Gahan PB (1982) Stimulated and non-stimulated rat spleen cells release different DNA complexes. Differentiation 22:47–52

    Article  CAS  PubMed  Google Scholar 

  10. Adams DH, Gahan PB (1983) The DNA extruded by rat spleen cells in culture. Int J Biochem 15:547–552

    Article  CAS  PubMed  Google Scholar 

  11. Stroun M, Anker P, Gahan PB, Henri J (1977) Spontaneous release of newly synthesized DNA from frog auricles. Arch Sci Genève 30:229–242

    Google Scholar 

  12. Stroun M, Anker P, Beljanski M, Henri J, Lederrey C, Ojha M, Maurice PA (1978) Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res 38:3546–3554

    Google Scholar 

  13. Théry C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15. doi:10.3410/B3-15)//48

    Article  PubMed Central  PubMed  Google Scholar 

  14. Anker P, Stroun M (1972) Bacterial ribonucleic acid in the frog brain after a bacterial peritoneal infection. Science 178:621–621

    Article  CAS  PubMed  Google Scholar 

  15. Stroun M (1970) The natural release of nucleic acids from bacteria into plant cells and the transcription of host cell DNA. FEBS Lett 8:349–353

    Article  CAS  PubMed  Google Scholar 

  16. Stroun M, Anker P (1972) Nucleic acids spontaneously released by living frog auricles. Biochem J 128:100–101

    Google Scholar 

  17. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 327:95–101

    Google Scholar 

  18. Bennett RM, Gabor GT, Merritt MM (1985) Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest 76:2182–2190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Laktionov PP, Tamkovich SN, Rykova EY, Bryzgunova OE, Starikov AV, Kuznetsova NP, Vlassov VV (2004) Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N Y Acad Sci 1022:221–227

    Google Scholar 

  20. Tamkovich SN, Litvjakov NV, Bryzgunova OE et al. (2007) Eds. 3rd international conference on basic science for medicine 2–8 Sept, Russian Academy of Sciences, Siberia

    Google Scholar 

  21. Yang HJ, Liu VW, Tsang PC, Yip AM, Tam KF, Wong LC, Ng TY, Ngan HY (2004) Quantification of human papillomavirus DNA in the plasma of patients with cervical cancer. Int J Gynecol Cancer 14:903–910

    Google Scholar 

  22. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Google Scholar 

  23. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, Gr­ne HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625

    Google Scholar 

  24. Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8(4):668–676

    Google Scholar 

  25. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    Google Scholar 

  26. Menegazzi R, Declava E, Dri P (2012) Killing by neutrophil extracellular traps: fact or folklore? Blood 119:1214–1216. doi:10.1182/blood-2011-07-364604

    Article  CAS  PubMed  Google Scholar 

  27. Gupta A, Hasler P, Gebhardt S, Holzgreve W, Hahn S (2006) Occurrence of neutrophil extracellular DNA traps (NETs) in pre-eclampsia: a link with elevated levels of cell-free DNA? Ann N Y Acad Sci 1075:118–122

    Article  CAS  PubMed  Google Scholar 

  28. Lo YM, Chan LY, Lo KW, Leung SF, Zhang J, Chan AT, Lee JC, Hjelm NM, Johnson PJ, Huang DP (1999) Circulating epstein-barr virus DNA in the serum of patients with gastric carcinoma. Cancer Res 59:1188–1891

    Google Scholar 

  29. Chan KC, Zhang J, Chan AT, Lei KI, Leung SF, Chan LY, Chow KC, Lo YM (2003) Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients. Cancer Res 63:2028–2032

    Google Scholar 

  30. Achour A, Boutolleau D, Slim A, Agut H, Gautheret-Dejean A (2007) Human herpesvirus-6 (HHV-6) DNA in plasma reflects the presence of infected blood cells rather than circulating viral particles. J Clin Virol 38:280–285

    Article  CAS  PubMed  Google Scholar 

  31. Beck J, Urnovitz HB, Riggert J, Clerici M, Schütz E (2009) Profile of the circulating DNA in apparently healthy individuals. Clin Chem 55:730–738

    Google Scholar 

  32. Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H (2003) Apoptosis at a glance: death or life? Cell Death Differ 10:108–116

    Google Scholar 

  33. van der Vaart M, Pretorius PJ (2007) The origin of circulating free DNA. Clin Chem 53:2215. doi:10.1373/clinchem.2007.092734

  34. Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC, Roden R, Sokoll LJ, Chan DW, Shih IM (2003) Increased plasma DNA integrity in cancer patients. Cancer Res 63:3966–3968

    Google Scholar 

  35. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46:318–322

    Google Scholar 

  36. Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM, Sorenson GD (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17:89–97

    Google Scholar 

  37. Stroun M, Anker P, Maurice P et al (1977) Circulating nucleic acids in higher organisms. Int Rev Cytol 51:1–48

    Article  CAS  PubMed  Google Scholar 

  38. Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617

    Article  CAS  PubMed  Google Scholar 

  39. Nagata S (2005) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875

    Article  CAS  PubMed  Google Scholar 

  40. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    Google Scholar 

  41. Pisetsky DS (2004) The immune response to cell death in SLE. Autoimmun Rev 3:500–504

    Article  CAS  PubMed  Google Scholar 

  42. Atamaniuk J, Ruzicka K, Stuhlmeier KM, Karimi A, Eigner M, Mueller MM (2006) Cell-free plasma DNA: a marker for apoptosis during hemodialysis. Clin Chem 52:523–526

    Google Scholar 

  43. Viorritto IC, Nikolov NP, Siegel RM (2007) Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol 122:125–134

    Article  CAS  PubMed  Google Scholar 

  44. Goebel G, Zitt M, Zitt M, Müller HM (2005) Circulating nucleic acids in plasma or serum (CNAPS) as prognostic and predictive markers in patients with solid neoplasias. Dis Markers 21:105–120

    Google Scholar 

  45. Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, Lo YM (2003) Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem 49:719–726

    Google Scholar 

  46. Lam NY, Rainer TH, Chiu RW, Joynt GM, Lo YM (2004) Plasma mitochondrial DNA concentrations after trauma. Clin Chem 50:213–216

    Google Scholar 

  47. Mehra N, Penning M, Maas J, van Daal N, Giles RH, Voest EE (2007) Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer. Clin Cancer Res 13:421–426

    Google Scholar 

  48. Hu G, Drescher KM, Chen X-M (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56–69

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Trans 117(1):1–4. doi:10.1007/s00702-009-0288-8

    Article  CAS  Google Scholar 

  50. Serrano-Heras G, García-Olmo D, García-Olmo DC (2010) Microvesicles circulating in plasma of rats contain DNA: are these small vesicles a main source of cell-free DNA in plasma. In: Gahan PB (ed) Circulating nucleic acids in plasma and serum. Springer Publishing Company, New York, pp 239–246

    Google Scholar 

  51. Waldenstrom A, Gennebäck N, Hellman U, Ronquist G. (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653. doi:10.1371/journal.pone.0034653

    Article  PubMed Central  PubMed  Google Scholar 

  52. Olsen I, Harris G (1974) Uptake and release of DNA by lymphoid tissue and cells. Immunology 27:973–987

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Rogers JC, Boldt D, Kornfeld S, Skinner A, Valeri CR (1972) Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen. Proc Natl Acad Sci U S A 69:1685–1689

    Google Scholar 

  54. Adams DH, McIntosh AA (1985) Studies on the cytosolic DNA of chick embryo fibroblasts and its uptake by recipient cultured cells. Int J Biochem 17:1041–1051

    Article  CAS  PubMed  Google Scholar 

  55. Ottolenghi E, Hotchkiss RD (1960) Appearance of genetic transforming activity in pneumococcal cultures. Science 132:1257–1259

    CAS  PubMed  Google Scholar 

  56. Ottolenghi E, Hotchkiss RD (1962) Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J Exp Med 116:491–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Borenstein S, Ephrati-Elizur E (1969) Spontaneous release of DNA in sequential genetic order by Bacillus subtilis. J Mol Biol 45:137–145

    Article  CAS  PubMed  Google Scholar 

  58. Adams DH, Diaz N, Gahan PB (1997) In vitro stimulation by tumour cell media of [3H]thymidine incorporation by mouse spleen lymphocytes. Cell Biochem Funct 15:119–124

    Article  CAS  PubMed  Google Scholar 

  59. Challen C, Adams DH (1987) The assembly of the DNA complex present in chick embryo cell cytosol. Int J Biochem 2004:235–243

    Article  Google Scholar 

  60. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276

    Google Scholar 

  61. Umetani N, Kim J, Hiramatsu S, Reber HA, Hines OJ, Bilchik AJ, Hoon DS (2006) Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52:1062–1069

    Google Scholar 

  62. Tangkijvanich P, Hourpai N, Rattanatanyong P, Wisedopas N, Mahachai V, Mutirangura A (2007) Serum LINE-1 hypomethylation as potential prognostic marker for hepatocellular carcinoma. Clin Chem Acta 379:127–133

    Google Scholar 

  63. Schulz WA, Steinhoff C, Florl AR (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250

    CAS  PubMed  Google Scholar 

  64. Gahan PB (2013) Circulating nucleic acids: possible inherited effects. Biol J Linn Soc Lond 110:931–948

    Article  Google Scholar 

  65. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319. doi:10.1186/1471-2164-14-319

  66. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science Publishing, New York

    Google Scholar 

  67. Salmena L, Polisena L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the “Rosetta Stone” of a hidden RNA language? Cell 146(3):353–358

    Google Scholar 

  68. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357. doi:10.1016/j.cell.2011.09.029

  69. Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381. doi:10.1016/j.cell.2011.09.041

  70. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP (2011) In vivo identification of tumor suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147(2):382–395. doi:10.1016/j.cell.2011.09.032

  71. Cha TA, Kolberg J, Irvine B, Stempien M, Beall E, Yano M, Choo QL, Houghton M, Kuo G, Han JH (1991) Use of a signature nucleotide sequence of hepatitis C virus for detection of viral RNA in human serum and plasma. J Clin Microbiol 29:2528–2534

    Google Scholar 

  72. Majde JA, Guha-Thakurta N, Chen Z, Bredow S, Krueger JM. (1998) Spontaneous release of stable viral double-stranded RNA into the extracellular medium by influenza virus-infected MDCK epithelial cells: implications for the viral acute phase response. Arch Virol 143:2371–2380

    Google Scholar 

  73. Garcia V, Garcia JM, Silva J, Peña C, Dominguez G, Lorenzo Y, Diaz R, Alonso I, Colas A, Hurtado A, Sanchez A, Bonilla F (2008) Levels of VEGF-A mRNA plasma from patients with colorectal carcinoma as possible surrogate marker of angiogenesis. J Cancer Res Clin Oncol 134:1165–1171

    Google Scholar 

  74. Li Y, Elashoff D, Oh M, Sinha U, St John MA, Zhou X, Abemayor E, Wong DT (2006) Serum circulating human mRNA profiling and its utility for oral cancer detection. J Clin Oncol 24:1754–1760

    Google Scholar 

  75. Hung EC, Chiu RW, Lo YM (2009) Detection of circulating fetanucleic acids: a review of methods and applications. J Clin Pathol 62:308–313

    Article  CAS  PubMed  Google Scholar 

  76. Shalchi Z, Sandhu HS, Butt AN, Smith S, Powrie J, Swaminathan R (2008) Retinal specific mRNA in the assessment of diabetic retinopathy. Ann N Y Acad Sci 1137:253–257

    Google Scholar 

  77. Holford NC, Sandhu HS, Thakkar H, Butt AN, Swaminathan R (2008) Stability of ß-actin mRNA in plasma. Ann N Y Acad Sci 1137:108–111

    Google Scholar 

  78. El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, Godfrey TE (2004) Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem 50:564–566

    Google Scholar 

  79. Vlassov VV, Laktionov PP, Rykova EY (2007) Extracellular nucleic acids. Bioessays 29:654–667

    Article  CAS  PubMed  Google Scholar 

  80. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180. doi:10.1038/ncomms1180

  81. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Google Scholar 

  82. Valadi H, Ekstrom K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Google Scholar 

  83. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O'Neal W, Pickles RJ, Sheehan JK (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23:1858–1868

    Google Scholar 

  84. Stroun M (1971) On the nature of the polymerase responsible for the transcription of released bacterial DNA in plant cells. Biochem Biophys Res Commun 44:571–578

    Article  CAS  PubMed  Google Scholar 

  85. Stroun M, Gahan PB, Sarid S (1969) Agrobacterium tumefaciens RNA in nontumorous tomato cells. Biochem Biophys Res Commun 37:652–657

    Article  CAS  PubMed  Google Scholar 

  86. García-Olmo DC, Picazo MG, Toboso I, Asensio AI, GarcÚa-Olmo D (2013) Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats. Mol Cancer 12:8

    Google Scholar 

  87. Morozkin ES, Babochkina TI, Vlassov VV, Laktionov PP (2008) The effect of protein transport inhibitors on the production of extracellular DNA. Ann N Y Acad Sci 1137:31–35

    Google Scholar 

  88. Gahan PB, Stroun M (2010) The virtosome—a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 28:529–538. doi:10.1002/cbf.1690

    Article  CAS  PubMed  Google Scholar 

  89. Viola-Magni MP (2011) The biochemical composition of virtosomes. J Nucleic Acid Invest 2(Suppl 1):2

    Google Scholar 

  90. Hägele H, Allam R, Pawar RD, Anders HJ (2009) Double-stranded RNA activates type I interferon secretion in glomerular endothelial cells via retinoic acid-inducible gene (RIG)-1. Nephrol Dial Transplant 24:3312–3318

    Article  PubMed  Google Scholar 

  91. Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269:30745–30748

    CAS  PubMed  Google Scholar 

  92. Fra AM, Williamson E, Simons K, Parton RG (1995) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A 92:8655–8659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Gibbings D, Voinnet O (2010) Control of RNA silencing and localization by endolysosomes. Trends Cell Biol 20:491–501

    Article  CAS  PubMed  Google Scholar 

  94. Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O'Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802

    Google Scholar 

  95. Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim do H, Cho IS, Nakahara K, Preall JB, Bellare P, Sontheimer EJ, Carthew RW (2009) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11:1150–1156

    Google Scholar 

  96. Detzer A, Overhoff M, Mescalchin A, Rompf M, Sczakiel G (2008) Phosphorothioate-stimulated cellular uptake of siRNA: a cell culture model for mechanistic studies. Curr Pharm Des 14:3666–3673

    Google Scholar 

  97. Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBVgenome negative ‘null’ and ‘T’ cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19:621–626

    Article  CAS  PubMed  Google Scholar 

  98. Menezes J, Leibold W, Klein G, Clements G (1975) Establishment and characterization of an Epstein–Barr virus (EBV)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-negative African Burkitt’s lymphoma. Biomedicine 22:276–284

    Google Scholar 

  99. Overhoff M, Sczakiel G (2005) Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep 6:1176–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7:49–56

    Article  CAS  PubMed  Google Scholar 

  101. Chuang TH, Lee J, Kline L, Mathison JC, Ulevitch RJ (2002) Toll-like receptor 9 mediates CpG-DNA signalling. J Leukoc Biol 71:538–544

    Google Scholar 

  102. Cornélie S, Hoebeke J, Schacht AM, Bertin B, Vicogne J, Capron M, Riveau G (2004) Direct evidence that toll-like receptor 9 (TLR9) functionally binds plasmid DNA by specific cytosine-phosphate-guanine motif recognition. J Biol Chem 279:15124–15129

    Google Scholar 

  103. Dalpke A, Frank J, Peter M, Heeg K (2006) Activation of toll-Like receptor 9 by DNA from different bacterial species. Infect Immun 74:940–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. El Kebir D, József L, Filep JG (2008) Neutrophil recognition of bacterial DNA and Toll-like receptor 9-dependent and -independent regulation of neutrophil function. Arch Immunol Ther Exp 56:41–53

    Article  Google Scholar 

  105. Hemmi H, Takeuchi O, Kawai T (2002) A Toll-like receptor recognizes bacterial DNA. J Leukoc Biol 71:538–544

    Google Scholar 

  106. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Google Scholar 

  107. Basner-Tschakarjan E, Mirmohammadsadegh A, Baer A (2004) Uptake and trafficking of DNA in keratinocytes: evidence for DNA-binding proteins. Gene Ther 11:765–774

    Article  CAS  PubMed  Google Scholar 

  108. Trombone AP, Silva CL, Lima KM, Oliver C, Jamur MC, Prescott AR, Coelho-Castelo AA (2007) Endocytosis of DNA-Hsp65 alters the pH of the late endosome/lysosome and interferes with antigen presentation. PLoS One 2(9):e923. doi:10.1371/journal.pone.0000923

  109. Yakubov LA, Deeva EA, Zarytiova VF, Ivanova EM, Ryte AS, Yurchenko LV, Vlassov VV (1989) Mechanism of oligonucleotide uptake by cells: involvement of specific receptors. Proc Natl Acad Sci U S A 86:6454–6458

    Google Scholar 

  110. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411

    Article  CAS  PubMed  Google Scholar 

  111. Mineo C, Anderson RG (2001) Potocytosis. Robert Feulgen lecture. Histochem Cell Biol 116:109–118

    CAS  PubMed  Google Scholar 

  112. Kiss AL (2012) Caveolae and the regulation of endocytosis. Adv Exp Med Biol 729:14–28

    Article  CAS  PubMed  Google Scholar 

  113. Kiss AL, Botos E (2009) Compartments to avoid lysosomal degradation? J Cell Mol Med 13:11228–11237

    Article  Google Scholar 

  114. Garcia-Olmo DC, Dominguez C, Garcia-Arranz M, Anker P, Stroun M, GarcÚa-Verdugo JM, GarcÚa-Olmo D (2010) Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 70:560–567

    Google Scholar 

  115. Trejo-Becerril C, Pérez-Cárdenas E, Teja-Chayeb L, Anker P, Herrera-Goepfert R, Medina-Velázquez LA, Hidalgo-Miranda A, Pérez-Montiel D, Chávez-Blanco A, Cruz-Velázquez J, Díaz-Chávez J, Gaxiola M, Dueñas-González A (2012) Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One 7:e52754

    Google Scholar 

  116. Balicki D, Putnam D, Scaria PV, Beutler E (2002) Structure and function correlation in histone H2A peptide mediated gene transfer. Proc Natl Acad Sci U S A 99:7467–7471

    Google Scholar 

  117. Böttger M, Zaitsev SV, Otto A, Haberland A, Vorob'ev VI (1998) Acid nuclear extracts as mediators of gene transfer and expression. Biochim Biophys Acta 1395:78–87

    Google Scholar 

  118. Budker V, Hagstrom JE, Lapina O, Eifrig D, Fritz J, Wolff JA (1997) Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques 23:142–147

    Google Scholar 

  119. Fritz JD, Herweijer H, Zhang G, Wolff JA (1996) Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum Gene Ther 7:1395–1404

    Article  CAS  PubMed  Google Scholar 

  120. Haberland A, Knaus T, Zaitsev SV, Buchberger B, Lun A, Haller H, Böttger M (2000) Histone H1-mediated transfection: serum inhibition can be overcome by Ca2+ions. Pharm Res 17:229–235

    Google Scholar 

  121. Zaitsev SV, Haberland A, Otto A, Vorob'ev VI, Haller H, B­ttger M (1997) H1 and HMG17 extracted from calf thymus nuclei are efficient DNA carriers in gene transfer. Gene Ther 4:586–592

    Google Scholar 

  122. Balicki D, Beutler E (1997) Histone H2A significantly enhances in vitro DNA transfection. Mol Med 3:782–787

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Balicki D, Reisfeld RA, Pertl U, Beutler E, Lode HN (2000) Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma. Proc Natl Acad Sci U S A 97:11500–11504

    Google Scholar 

  124. Singh D, Rigby PW (1996) The use of histone as a facilitator to improve the efficiency of retroviral gene transfer. Nucleic Acids Res 24:3113–3114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Demirhan I, Hasselmayer O, Chandra A, Ehemann M, Chandra P (1998) Histone-mediated transfer and expression of the HIV-1 tat gene in Jurkat cells. J Human Virol 1:430–440

    Google Scholar 

  126. Hariton-Gazal E, Rosenbluh J, Graessmann A, Gilon C, Loyter A (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586

    Google Scholar 

  127. Peters DL, Pretorius PJ (2011) Origin, translocation and destination of extracellular occurring DNA – a new paradigm in genetic behaviour. Clin Chim Acta 412:808–811

    Google Scholar 

  128. Wittrup A, Sandgren S, Lilja J, Bratt C, Gustavsson N, M­rgelin M, Belting M (2007) Identification of proteins released by mammalian cells that mediate DNA internalization through proteoglycan-dependent macropinocytosis. J Biol Chem 282:27897–27904

    Google Scholar 

  129. Melchior F, Gerace L (1995) Mechanisms of nuclear protein import. Curr Opin Cell Biol 7:310–318

    Article  CAS  PubMed  Google Scholar 

  130. Zamecnik P, Aghajanian J, Zamecnik M, Goodchild J, Witman G (1994) Electron micrographic studies of transport of oligodeoxynucleotides across eukaryotic cell membranes. Proc Natl Acad Sci U S A 91:3156–3160

    Google Scholar 

  131. Gahan PB, Wyndaele R, Mantell S, Boggetti B (2003) Evidence that direct DNA uptake through cut shoots leads to genetic transformation of Solanum aviculare Forst. Cell Biochem Funct 21:11–17

    Google Scholar 

  132. Jans DA, Hubner S (1996) Regulation of protein transport to the nucleus: central role in phosphorylation. Physiol Rev 76:651–685

    CAS  PubMed  Google Scholar 

  133. Dworetzky SI, Lanford RE, Feldherr CM (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol 107:1279–1287

    Google Scholar 

  134. Sebestyen MG, Ludtke JJ, Bassik MC, Zhang G, Budker V, Lukhtanov EA, Hagstrom JE, Wolff JA (1998) DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 16:80–85

    Google Scholar 

  135. Guang S, Bochner AF, Pavelec DM (2008) An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321:537–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Nguyen TD, Taffet SM (2009) A model system to study Connexin 43 in the immune system. Mol Immunol 46:2938–2946

    Article  CAS  PubMed  Google Scholar 

  137. Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell—cell communication. Neuron Glia Biol 199–208

    Google Scholar 

  138. Garcia-Olmo DC, Ruiz-Piqueras R, Garcia-Olmo D (2004) Circulating nucleic acids in plasma and serum (CNAPS) and its relation to stem cells and cancer metastasis: state of the issue. Histol Histopathol 19:575–583

    CAS  PubMed  Google Scholar 

  139. Anker P, Stroun M (1977) Spontaneous extra-cellular synthesis of DNA released by frog auricles. Arch Sci Geneve 30:263–278

    CAS  Google Scholar 

  140. Chan WF, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, Nelson JL (2012) Male microchimerism in the human female brain. PLoS One 7(9):e45592. doi:10.1371/journal.pone.0045592

  141. Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS (2005) Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 23:1443–1452. doi:10.1634/stemcells.2004-0169

  142. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. doi:10.1038/nature08780

  143. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255

    Google Scholar 

  144. Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Ibrahim N, Handa H, Cosset A, Koulintchenko M, Konstantinov Y, Lightowlers RN, Dietrich A, Weber-Lotfi F (2011) DNA delivery to mitochondria: sequence specificity and energy enhancement. Pharm Res 28(11):2871–2882

    Google Scholar 

  146. Anker P, Jachertz D, Stroun M, Brögger R, Lederrey C, Henri J, Maurice PA (1980) The role of extracellular DNA in the transfer of information from T to B human lymphocytes in the course of an immune response. J Immunogenet 6:475–481

    Google Scholar 

  147. Anker P, Jachertz D, Maurice PA, Stroun M (1984) Nude mice injected with DNA released by antigen stimulated human T lymphocytes produce specific antibodies expressing human characteristics. Cell Biochem Funct 2:33–37

    Article  CAS  PubMed  Google Scholar 

  148. Viola-Magni MP, Sesay A, Cataldi S, Gahan PB, Stroun M (2011) Biological activity of virtosomes released from stimulated and non-stimulated lymphocytes. J Nucleic Acid Invest 2(Suppl 1):37

    Google Scholar 

  149. Ermakov AV, Kostyuk SV, Konkova MS, Egolina NA, Malinovskaya EM, Veiko NN (2008) Extracellular DNA fragments. Factors of stress signaling between X-irradiated and non-irradiated human lymphocytes. Ann N Y Acad Sci 1137:41–46

    Google Scholar 

  150. Hamada N, Matsumoto H, Hara T, Kobayashi Y (2007) Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res 48:87–95

    Article  CAS  PubMed  Google Scholar 

  151. Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60:943–950

    Google Scholar 

  152. Klokov D, Criswell T, Leskov KS, Araki S, Mayo L, Boothman DA (2004) IR-inducible clusterin gene expression: a protein with potential roles in ionizing radiation induced adaptive responses, genomic instability, and bystander effects. Mutat Res 568:97–110

    Google Scholar 

  153. Lorimore SA, Wright EG (2003) Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? Int J Radiat Biol 79:15–25

    Article  CAS  PubMed  Google Scholar 

  154. Matsumoto H, Tomita M, Otsuka K, Hatashita M, Hamada N (2011) Nitric oxide is a key molecule serving as a bridge between radiation-induced bystander and adaptive responses. Curr Mol Pharmacol 4:126–134

    Google Scholar 

  155. Trainor C, Butterworth KT, McGarry CK, McMahon SJ, O'Sullivan JM, Hounsell AR, Prise KM (2012) DNA damage responses following exposure to modulated radiation fields. PLoS One 7:e43326

    Google Scholar 

  156. Bulicheva N, Fidelina O, Mkrtumova N, Neverova M, Bogush A, Bogush M, Roginko O, Veiko N (2008) Effect of cell-free DNA of patients with cardiomyopathy and rDNA on the frequency of contraction of electrically paced neonatal rat ventricular myocytes in culture. Ann N Y Acad Sci 1137:273–277

    Google Scholar 

  157. Anker P, Lyautey J, Lefort F, Lederrey C, Stroun M (1994) Transformation of NIH/3T3 cells and SW 480 cells displaying K-ras mutation. CR Acad Sci III 317(10):869–874

    Google Scholar 

  158. García-Olmo D, García-Olmo DC, Domínguez-Berzosa C, Guadalajara H, Vega L, GarcÚa-Arranz M (2012) Oncogenic transformation induced by cell-free nucleic acids circulating in plasma (genometastasis) remains after the surgical resection of the primary tumor: a pilot study. Expert Opin Biol Ther 12(Suppl 1):S61–S68

    Google Scholar 

  159. Skvortsova TE, Vlassov VV, Laktionov PP (2008) Binding and penetration of methylated DNA into primary and transformed human cells. Ann N Y Acad Sci 1137:36–40

    Article  CAS  PubMed  Google Scholar 

  160. García-Olmo D, García-Olmo DC, Ontañón J, Martinez E, Vallejo M (1999) Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of genometastasis. Histol Histopath 14:1159–1164

    Google Scholar 

  161. García-Olmo D, García-Olmo DC, Ontañón J, Martinez E (2000) Horizontal transfer of DNA and the ‘genometastasis hypothesis’. Blood 95:724–725

    PubMed  Google Scholar 

  162. García-Olmo DC, Picazo MG, García-Olmo D (2012) Transformation of non tumor host cells during tumor progression: theories and evidence. Expert Opin Biol Ther 12(Suppl1):S199–S207

    Google Scholar 

  163. Yakubov LA, Rogachev VA, Likhacheva AC, Bogachev SS, Sebeleva TE, Shilov AG, Baiborodin SI, Petrova NA, Mechetina LV, Shurdov MA, Wickstrom E (2007) Natural human gene correction by small genomic DNA fragments. Cell Cycle 6(18):2293–2301

    Google Scholar 

  164. Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough TG, Micklem G, Tunnacliffe A (2012) Biochemical diversification through foreign gene expression in Bdelloid Rotifers. PLoS Genet 8:e1003035. doi:10.1371/journal.pgen.1003035

  165. Sun BF, Xiao JH, He SM, Liu L, Murphy RW, Huang DW (2013) Multiple ancient horizontal gene transfers and duplications in lepidopteran species. Insect Mol Biol 22:72–87

    Google Scholar 

  166. Weissman A (1893) The germ-plasm. A theory of heredity. Charles Scribner’s Sons, New York

    Book  Google Scholar 

  167. Gahan PB, Stroun M (2011) Aspects of the biology of circulating nucleic acids. J Nucleic Acid Invest 2(Suppl 1):8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Gahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gahan, P.B. (2015). The Biology of CNAPS. In: Gahan, P. (eds) Circulating Nucleic Acids in Early Diagnosis, Prognosis and Treatment Monitoring. Advances in Predictive, Preventive and Personalised Medicine, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9168-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9168-7_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9167-0

  • Online ISBN: 978-94-017-9168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics