Skip to main content

Spectral Invariants

  • Chapter
  • First Online:
Noncommutative Geometry and Particle Physics

Part of the book series: Mathematical Physics Studies ((MPST))

  • 1993 Accesses

Abstract

In the previous chapter we have identified the gauge group canonically associated to any spectral triple and have derived the generalized gauge fields that carry an action of that gauge group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D55, 6357–6366 (1997)

    MathSciNet  ADS  Google Scholar 

  4. Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)

    Google Scholar 

  5. Widder, D.V.: The Laplace Transform. Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton (1941)

    Google Scholar 

  6. Connes, A., Chamseddine, A.H.: Inner fluctuations of the spectral action. J. Geom. Phys. 57, 1–21 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. van Suijlekom, W.D.: Perturbations and operator trace functions. J. Funct. Anal. 260, 2483–2496 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Higson, N.: The residue index theorem of Connes and Moscovici. In: Surveys in Noncommutative Geometry, Vol. 6 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI, pp. 71–126 (2006)

    Google Scholar 

  9. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7, 65–222 (1982)

    Google Scholar 

  10. Hansen, F.: Trace functions as Laplace transforms. J. Math. Phys. 47(11), 043504 (2006)

    Google Scholar 

  11. Skripka, A.: Asymptotic expansions for trace functionals. J. Funct. Anal. 266, 2845–2866 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gilliam, D.S., Hohage, T., Ji, X., Ruymgaart, F.: The Fréchet derivative of an analytic function of a bounded operator with some applications. Int. J. Math. Math. Sci. 17, Art. ID 239025 (2009)

    Google Scholar 

  13. Lifshits, I.: On a problem in perturbation theory (russian). Uspehi Matem. Nauk. 7, 171–180 (1952)

    MATH  MathSciNet  Google Scholar 

  14. Krein, M.: On a trace formula in perturbation theory. Matem. Sbornik 33, 597–626 (1953)

    MathSciNet  Google Scholar 

  15. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry II. Math. Proc. Cambridge Philos. Soc. 78, 405–432 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry III. Math. Proc. Cambridge Philos. Soc. 79, 71–99 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Yafaev, D.R.: Mathematical Scattering Theory, vol. 105 of Translations of Mathematical Monographs. General Theory. American Mathematical Society, Providence (1992). (Translated from the Russian by J.R Schulenberger)

    Google Scholar 

  19. Birman, M.S., Pushnitski, A.B.: Spectral Shift Function, Amazing and Multifaceted. Integr. Eqn. Oper. Theory 30, 191–199 (1998). [Dedicated to the memory of Mark Grigorievich Krein (1907–1989)]

    Google Scholar 

  20. Koplienko, L.S.: The trace formula for perturbations of nonnuclear type. Sibirsk. Mat. Zh. 25, 62–71 (1984)

    MathSciNet  Google Scholar 

  21. Potapov, D., Skripka, A., Sukochev, F.: Spectral shift function of higher order. Invent. Math. 193, 501–538 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Carey, A., Phillips, J.: Unbounded Fredholm modules and spectral flow. Canad. J. Math. 50, 673–718 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Phillips, J., Raeburn, I.: An index theorem for Toeplitz operators with noncommutative symbol space. J. Funct. Anal. 120, 239–263 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Müller, W.: Relative zeta functions, relative determinants and scattering theory. Commun. Math. Phys. 192, 309–347 (1998)

    Article  MATH  ADS  Google Scholar 

  25. Azamov, N.A., Carey, A.L., Sukochev, F.A.: The spectral shift function and spectral flow. Commun. Math. Phys. 276, 51–91 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift, and spectral flow. Canad. J. Math. 61, 241–263 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras I. Spectral flow. Adv. Math. 202, 451–516 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras II. The even case. Adv. Math. 202, 517–554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Benameur, M.-T., Fack, T.: Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras. Adv. Math. 199, 29–87 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Carey, A.L., Phillips, J., Sukochev, F.A.: On unbounded \(p\)-summable Fredholm modules. Adv. Math. 151, 140–163 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Carey, A., Phillips, J., Sukochev, F.: Spectral flow and Dixmier traces. Adv. Math. 173, 68–113 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gesztesy, F., Latushkin, Y., Makarov, K.A., Sukochev, F., Tomilov, Y.: The index formula and the spectral shift function for relatively trace class perturbations. Adv. Math. 227, 319–420 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hermite, C.: Sur la formule d’interpolation de lagrange. J. Reine Angew. Math. 84, 70–79 (1878)

    Article  Google Scholar 

  34. Floater, M.S., Lyche, T.: Two chain rules for divided differences and Faà di Bruno’s formula. Math. Comp. 76, 867–877 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Donoghue Jr, W.F.: Monotone Matrix functions and Analytic Continuation. Die Grundlehren der Mathematischen Wissenschaften, Band 207. Springer, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. van Suijlekom .

7.A Divided Differences

7.A Divided Differences

We recall the definition of and some basic results on divided differences.

Definition 7.17

Let \(f: \mathbb {R}\rightarrow \mathbb {R}\) and let \(x_0, x_1, \ldots x_n\) be distinct points in \(\mathbb {R}\). The divided difference of order \(n\) is defined by the recursive relations

$$\begin{aligned} f[x_0]&= f(x_0), \\ f[x_0,x_1, \ldots x_n]&= \frac{ f[x_1, \ldots x_n] -f[x_0,x_1, \ldots x_{n-1}]}{x_{n} - x_0}. \end{aligned}$$

On coinciding points we extend this definition as the usual derivative:

$$ f[x_0, \ldots ,x \ldots , x \ldots x_n]:= \lim _{u \rightarrow 0} f[x_0, \ldots ,x+u \ldots , x \ldots x_n]. $$

Finally, as a shorthand notation, for an index set \(I =\{i_1, \ldots , i_n \}\) we write

$$ f[x_{I}] = f[x_{i_1}, \ldots , x_{i_n}]. $$

Also note the following useful representation:

Proposition 7.18

For any \(x_0, \ldots , x_n \in \mathbb {R}\),

$$ f[x_0, x_1, \ldots , x_n] = \int \limits _{\Delta _n} f^{(n)} \left( s_0 x_0 + s_1 x_1 + \cdots + s_n x_n\right) d^ns. $$

Proof

See Note 12 on page 133. \(\Box \)

Exercise 7.1

Prove Proposition 7.18 and show that it implies

$$ \sum _{i=0}^n f[x_0, \ldots , x_i,x_i, \ldots , x_n] = f'[x_0, x_1, \ldots , x_n]. $$

Proposition 7.19

For any \(x_1, \ldots x_n \in \mathbb {R}\) for \(f(x)= g(x^2)\) we have,

$$\begin{aligned} f[x_0,\cdots ,x_n] = \sum _I \left( \prod _{\{ i-1, i \} \subset I} (x_i+x_{i+1}) \right) g[x_I^2] , \end{aligned}$$

where the sum is over all ordered index sets \(I= \{ 0 = i_0 < i_1<\cdots <i_k =n \}\) such that \(i_{j} - i_{j-1} \le 2\) for all \(1 \le j \le k\) (i.e. there are no gaps in \(I\) of length greater than 1).

Proof

This follows from the chain rule for divided differences (see Note 13 on page 133): if \(f = g \circ \phi \), then

$$ f[x_0, \ldots x_n] = \sum _{k=1}^n \sum _{ 0 = i_0 < i_1<\ldots <i_k =n } g[\phi (x_{i_0}), \ldots , \phi (x_{i_k})] \prod _{j=0}^{k-1} \phi [ x_{i_j}, \ldots , x_{i_{j+1}}]. $$

For \(\phi (x) = x^2\) we have \(\phi [x,y]= x+y\), \(\phi [x,y,z]= 1\) and all higher divided differences are zero. Thus, if \(i_{j+1} - i_j > 2\) then \(\phi [ x_{i_j}, \ldots , x_{i_{j+1}}]=0\). In the remaining cases one has

$$ \phi [ x_{i_j}, \ldots , x_{i_{j+1}}]= \left\{ \begin{array}{ll} x_{i_j}+ x_{i_{j+1}} &{}\quad \text {if } \,i_{j+1} - i_j =1 \\ 1 &{}\quad \text {if } \,i_{j+1} - i_j =2 ,\\ \end{array}\right. $$

and in the above summation this selects precisely the index sets \(I\). \(\Box \)

Example 7.20

For the first few terms, we have

$$\begin{aligned} f[x_0,x_1]&= (x_0+x_1) g[x_0^2, x_1^2],\\ f[x_0,x_1,x_2]&= (x_0+x_1)(x_1+x_2) g[x_0^2, x_1^2,x_2^2] + g[x_0^2,x_2^2] ,\\ f[x_0,x_1,x_2,x_3]&= (x_0+x_1)(x_1+x_2)(x_2+x_3) g[x_0^2,x_1^2, x_2^2,x_3^2] \\&\quad + (x_2+x_3) g[x_0^2,x_2^2,x_3^2] + (x_0+x_1) g[x_0^2,x_1^2, x_3^2]. \end{aligned}$$

Notes

Section 7.1 Spectral Action Functional

  1. 1.

    The spectral action principle was introduced by Chamseddine and Connes in [1, 2].

  2. 2.

    Note that we have put two restrictions on the fermions in the fermionic action \(S_f\) of Definition 7.3. The first is that we restrict ourselves to even vectors in \(\mathcal {H}^+\), instead of considering all vectors in \(\mathcal {H}\). The second restriction is that we do not consider the inner product \(\langle J\tilde{\psi }',D_\omega \tilde{\psi }\rangle \) for two independent vectors \(\psi \) and \(\psi '\), but instead use the same vector \(\psi \) on both sides of the inner product. Each of these restrictions reduces the number of degrees of freedom in the fermionic action by a factor of \(2\), yielding a factor of \(4\) in total. It is precisely this approach that solves the problem of fermion doubling pointed out in [3] (see also the discussion in [4], Chap. 1, Sect. 16.3]). We shall discuss this in more detail in Chaps. 9 and 11, where we calculate the fermionic action for electrodynamics and the Standard Model, respectively.

Section 7.2 Expansions of the Spectral Action

  1. 3.

    For a complete treatment of the Laplace–Stieltjes transform, see [5].

  2. 4.

    Lemma 7.6 appeared as [4, Lemma 1.144].

  3. 5.

    Corollary 7.8 is [4], Theorem 1.145]. An analysis of the term \({{\mathrm{Tr}}}|D_\omega |^{-z} \big |_{z=0}\) therein, including a perturbative expansion in powers of \(\omega \) has been obtained in [6].

  4. 6.

    Section 7.2.2 is based on [7].

  5. 7.

    The notation \(\langle X_0, \ldots , X_n \rangle _{t,n}\) should not be confused with the zeta functions \(\langle X_0,\ldots , X_n \rangle _z\) introduced in Chap. 5. However, they are related through the formula

    $$ \langle X_0, \ldots , X_n \rangle _{t,n} = \frac{(-1)^p}{2 \pi i } {{\mathrm{Tr}}}\int e^{-t \lambda } X_0 (\lambda -D^2)^{-1} X_1 \cdots A^n (\lambda -D^2)^{-1} d \lambda . $$

    Multiplying this expression by \(t^{z-1}\) and integrating over \(t\) eventually yields \(\langle X_0,\ldots , X_n \rangle _z\). For details, we refer to [8], Appendix A].

  6. 8.

    For more details on Gâteaux derivatives, we refer to [9]. For instance, that the Gâteaux derivative of a linear map \(F\) between Fréchet spaces is a linear map \(F'(x)(\cdot )\) for any \(x \in X\) is shown in [9], Theorem 3.2.5].

  7. 9.

    The expansion in Eq. 7.2.4 is asymptotic in the sense that the partial sums \(\sum _{n=0}^N \frac{1}{n!} S_b^{(n)}(0)(\omega , \ldots , \omega )\) can be estimated to differ from \(S_b[\omega ]\) by \(\mathcal {O}(\Vert \omega \Vert ^{N+1})\). This is made precise in [7].

  8. 10.

    Theorem 7.14 was proved in [7]. A similar result was obtained in finite dimensions in [10] and in a different setting in [11]. Corollary 7.16 was obtained at first order for bounded operators [12].

  9. 11.

    There is a close connection between the spectral action, the Krein spectral shift function [13, 14], as well as the spectral flow of Atiyah and Lusztig [15–17]. One way to see this is from Theorem 7.11, where we can control the asymptotic expansion of the spectral action using the remainder terms \(R_k\). In [11] these terms are analyzed and related to a spectral shift formula [13, 14] (see also the book [18] and the review [19], and references therein). In fact, under the assumption that \(f\) has compact support, the first rest term \(S_b[\omega ] - S_b^{(0)}(0)\) becomes

    $$ {{\mathrm{Tr}}}f(D+\omega ) - {{\mathrm{Tr}}}f(D) = \int _\mathbb {R}f(x) d ({{\mathrm{Tr}}}E_{D+\omega }(x)) - \int _\mathbb {R}f(x) d ({{\mathrm{Tr}}}E_{D}(x)), $$

    where \(E_{D+\omega }\) and \(E_D\) are the spectral projections of \(D+\omega \) and \(D\), respectively. After a partial integration, we then obtain [11][Theorem 3.9]

    $$\begin{aligned} (*)\qquad \qquad \qquad \qquad {{\mathrm{Tr}}}f(D+\omega ) - {{\mathrm{Tr}}}f(D) = \int _\mathbb {R}f'(x) \xi (x) dx , \end{aligned}$$

    where

    $$ \xi (x) = {{\mathrm{Tr}}}\left( E_{D+\omega }(x) - E_{D}(x) \right) $$

    is the so-called spectral shift function. Moreover, it turns out that the higher-order rest terms are related to higher-order spectral shift functions [20, 21].

    Let us also briefly describe the intriguing connection between the spectral shift function and the local index formula of Chap. 5. In fact, [22] (using a result from [23], Appendix B]) relates the index of \(PuP\) which appears in the odd local index formula (Theorem 5.21) to the spectral flow \(sf (\{ D_t\})\) of the family \(D_t = (1-t)D+ t u Du^*= D + t u[D,u^*]\) for \(0 \le t \le 1\). Roughly speaking, the spectral flow of such a family of operators is given by the net number of eigenvalues of \(D_t\) that pass through \(0\) in the positive direction when \(t\) runs from \(0\) to \(1\). One then has

    $$ {{\mathrm{index}}}\,PuP = sf (\{ D_t\}_{t\in [0,1]}). $$

    The connection between spectral flow and the spectral shift function was first hinted at in [24] and has been worked out in [25, 26]. Essentially, these latter papers build on the observation that the spectral flow from \(D_0 - x\) to \(D_1-x\) for any real number \(x\) is equal to the spectral shift function \(\xi (x)\) defined above in terms of the spectral projections of \(D_0\) and \(D_1\). Note that for a path connecting \(D\) and the unitarily equivalent operator \(uDu^*\) the spectral shift function is a constant. In fact, since \(D\) and \(uDu^*\) have identical spectrum, the left-hand side of (\({*}\)) vanishes. Integration by parts on the right-hand side then ensures that \(\xi \) is constant (and in fact equal to the above index).

    Eventually, a careful analysis of the spectral flow [27] (and [28] for the even case) allows one to prove the local index formula in the much more general setting of semi-finite spectral triples [22, 29–31].

    Another encounter of spectral shift and spectral flow is in the computation of the index of the operator \(d/dt + A(t)\) with \(A(t)\) a suitable family of perturbations \((t \in \mathbb {R}\)). In fact, they were the operators studied by Atiyah, Patodi and Singer in [15–17]. The index of \(d/dt + A(t)\) can be expressed in terms of the spectral flow of \(A(t)\) under the assumptions that \(A(\pm \infty )\) is boundedly invertible, and that \(A(t)\) has discrete spectrum for all \(t \in \mathbb {R}\). We refer to [32] for a careful historical account, and the extension of this result to relatively trace class perturbations \(A(t)\).

Appendix 7.A Divided Differences

  1. 12.

    Proposition 7.18 is due to Hermite [33].

  2. 13.

    The chain rule for divided differences is proved in [34]. For Cauchy’s formula for divided differences, we refer to [35, Chap. I.1].

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Suijlekom, W.D. (2015). Spectral Invariants. In: Noncommutative Geometry and Particle Physics. Mathematical Physics Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9162-5_7

Download citation

Publish with us

Policies and ethics