Skip to main content

The Noncommutative Geometry of the Standard Model

  • Chapter
  • First Online:
Noncommutative Geometry and Particle Physics

Part of the book series: Mathematical Physics Studies ((MPST))

  • 2073 Accesses

Abstract

One of the major applications of noncommutative geometry to physics has been the derivation of the Standard Model of particle physics from a suitable almost-commutative manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Kane, G.L.: Modern Elementary Particle Physics. Perseus, Cambridge (1993)

    Google Scholar 

  3. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Connes, A.: Essay on physics and noncommutative geometry. In: The Interface of Mathematics and Particle Physics (Oxford, 1988), The Institute of Mathematics and its Applications Conference Series, vol. 24, pp. 9–48. Oxford University Press, New York (1990)

    Google Scholar 

  5. Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. 18B, 29–47 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Martín, C.P., Gracia-Bondía, J.M., Várilly, J.C.: The standard model as a noncommutative geometry: the low-energy regime. Phys. Rep. 294, 363–406 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Scheck, F., Upmeier, H., Werner, W. (eds.): Noncommutative geometry and the standard model of elementary particle physics. Lecture Notes in Physics, vol. 596. Springer, Berlin (2002) (Papers from the conference held in Hesselberg, March 14–19, 1999)

    Google Scholar 

  10. Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barrett, J.W.: A Lorentzian version of the non-commutative geometry of the standard model of particle physics. J. Math. Phys. 48, 012303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. JHEP 0611, 081 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D55, 6357–6366 (1997)

    ADS  MathSciNet  Google Scholar 

  14. Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)

    Google Scholar 

  15. van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)

    Article  MathSciNet  Google Scholar 

  16. Chamseddine, A.H., Connes, A.: Why the standard model. J. Geom. Phys. 58, 38–47 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Ćaćić, B.: Moduli spaces of dirac operators for finite spectral triples. In: Marcolli, M., Parashar, D. (eds.) Quantum Groups and Noncommutative Spaces: Perspectives on Quantum Geometry. Vieweg Verlag, Wiesbaden (2010)

    Google Scholar 

  18. Alvarez, E., Gracia-Bondía, J.M., Martin, C.: Anomaly cancellation and the gauge group of the standard model in NCG. Phys. Lett. B364, 33–40 (1995)

    Article  ADS  Google Scholar 

  19. Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Amer. Math. Soc. (N.S.) 47, 483–552 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  21. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. Weinberg, S.: Physical processes in a convergent theory of the weak and electromagnetic interactions. Phys. Rev. Lett. 27, 1688–1691 (1971)

    Article  ADS  Google Scholar 

  23. Weinberg, S.: General theory of broken local symmetries. Phys. Rev. D7, 1068–1082 (1973)

    ADS  Google Scholar 

  24. Weinberg, S.: The quantum theory of fields, vol. 2. Cambridge University Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. van Suijlekom .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Suijlekom, W.D. (2015). The Noncommutative Geometry of the Standard Model. In: Noncommutative Geometry and Particle Physics. Mathematical Physics Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9162-5_11

Download citation

Publish with us

Policies and ethics