Magnetoelectric Effect in Electromechanical Resonance Region

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 201)

Abstract

We present a theory for the resonance enhancement of ME interactions at frequencies corresponding to electromechanical resonance (EMR). Frequency dependence of ME voltage coefficients are obtained using the simultaneous solution of electrostatic, magnetostatic and elasto-dynamic equations. The ME voltage coefficients are estimated from known material parameters (piezoelectric coupling, magnetostriction, elastic constants, etc.) of composite components. It is shown that the resonance enhancement of ME interactions is observed at frequencies corresponding to EMR and ME coupling in the EMR region exceeds the low-frequency value by more than an order of magnitude. It was found that the peak transverse ME coefficient at EMR is larger than the longitudinal one. The results of calculations obtained for a nickel-ferrite spinel–PZT composite are in good agreement with the experimental data.

Keywords

Magnetoelectric effect Piezoelectrics Magnetostrictive materials Multiferroics Electromechanical resonance Resonance enhancement of ME coupling 

References

  1. Bichurin MI, Filippov DA, Petrov VM, Laletsin VM, Paddubnaya NN, Srinivasan G (2003) Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys Rev B, 68:132408(1)–132408(4)Google Scholar
  2. Bichurin MI Magnetoelectric interaction in magnetically ordered materials (Review) (2012) In: Bichurin MI, Viehland D (eds) Magnetoelectricity in composites. Pan Stanford Publishing, Singapore, pp 1–24Google Scholar
  3. Bichurin MI, Petrov VM () Magnetoelectric effect in the electromechanical resonance range (2012) In: Bichurin MI, Viehland D (eds) Magnetoelectricity in composites. Pan Stanford Publishing, Singapore, pp 91–104Google Scholar
  4. Bichurin MI, Petrov VM (2010) Magnetoelectric effect in magnetostriction-piezoelectric multiferroics. Low Temp Phys 36:544–549CrossRefGoogle Scholar
  5. Bichurin MI, Petrov VM (2012) Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites. Adv Condens Matter Phys 2012:798310Google Scholar
  6. Bichurin MI, Petrov VM, Averkin SV, Filippov AV (2010b) Electromechanical resonance in magnetoelectric layered structures. Phys Solid State 52:2116CrossRefGoogle Scholar
  7. Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010a) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J Appl Phys 107:053904CrossRefGoogle Scholar
  8. Bichurin MI, Petrov VM, Petrov RV (2012a) Direct and inverse magnetoelectric effect in layered composites in electromechanical resonance range: a review. J Magn Magn Mater 324:3548–3550CrossRefGoogle Scholar
  9. Bichurin MI, Petrov RV, Petrov VM (2013) Magnetoelectric effect at thickness shear mode in ferrite-piezoelectric bilayer. Appl Phys Lett 103:0929021CrossRefGoogle Scholar
  10. Bichurin MI, Petrov VM, Petrov RV, Priya S (2012b) Electromechanical resonance in magnetoelectric composites: direct and inverse effect. Solid State Phenom 189:129–143CrossRefGoogle Scholar
  11. Fetisov LY, Perov NS, Fetisov YK, Srinivasan G, Petrov VM (2011) Resonance magnetoelectric interactions in an asymmetric ferromagnetic-ferroelectric layered structure. J Appl Phys 109:053908CrossRefGoogle Scholar
  12. Filippov DA, Bichurin MI, Petrov VM, Laletin VM, Poddubnaya NN, Srinivasan G (2004) Giant magnetoelectric effect in composite materials in the region of electromechanical resonance. Tech Phys Lett 30(1):15–20CrossRefGoogle Scholar
  13. Laletin VM, Petrov VM (2011) Nonlinear magnetoelectric response of a bulk magnetostrictive–piezoelectric composite. Solid State Commun 151:1806–1809CrossRefGoogle Scholar
  14. Mandal SK, Sreenivasulu G, Petrov VM, Srinivasan G (2010) Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl Phys Lett 96:192502CrossRefGoogle Scholar
  15. Petrov VM, Bichurin MI, Srinivasan G, Laletin VM, Petrov RV (2012) Bending modes and magnetoelectric effects in asymmetric ferromagnetic-ferroelectric structure. Solid State Phenom 190:281–284CrossRefGoogle Scholar
  16. Petrov VM, Bichurin MI, Zibtsev VV, Mandal SK, Srinivasan G (2009b) Flexural deformation and bending mode of magnetoelectric nanobilayer. J Appl Phys 106:113901CrossRefGoogle Scholar
  17. Petrov VM, Srinivasan G, Bichurin MI, Galkina TA (2009a) Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. J Appl Phys 105:063911CrossRefGoogle Scholar
  18. Sreenivasulu G, Mandal SK, Petrov VM, Mukundan A, Rengesh S (2011) Bending resonance in a magnetostrictive-piezoelectric bilayer and magnetoelectric interactions. Integr Ferroelectr 126:87–93CrossRefGoogle Scholar
  19. Sreenivasulu G, Petrov VM, Fetisov LY, Fetisov YK, Srinivasan G (2012) Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Phys Rev B 86:214405CrossRefGoogle Scholar
  20. Zhang N, Petrov VM, Johnson T, Mandal SK, Srinivasan G (2009) Enhancement of magnetoelectric coupling in a piezoelectric-magnetostrictive semiring structure. J Appl Phys 106:126101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Electronic and Information SystemsNovgorod State UniversityVeliky NovgorodRussia

Personalised recommendations