Skip to main content

Regulation of Integrin Activity by Phosphorylation

  • Chapter
  • First Online:
I Domain Integrins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 819))

Abstract

Integrins are heterodimeric complex type I membrane proteins involved in cellular adhesion and signaling. They exist as inactive molecules in resting cells, and need activation to become adhesive. Although much is known about their structure, and a large number of interacting molecules have been described, we still only partially understand how their activities are regulated. In this review we focus on the leukocyte-specific β2—integrins and, specifically, on the role of integrin phosphorylation in the regulation of activity. Phosphorylation reactions can be fast and reversible, thus enabling strictly directed regulatory activities both time-wise and locally in specific regions of the plasma membrane in different leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnaout MA, Pitt J, Cohen HJ, Melamed J, Rosen FS, Colten HR (1982) Deficiency of a granulocyte-membrane glycoprotein (gp150) in a boy with recurrent bacterial Infections. New Engl J Med 306:693–699

    Article  CAS  PubMed  Google Scholar 

  2. Kurzinger K, Reynolds T, Germain RN, Davignon D, Martz E, Springer TA (1981) A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J Immunol 127:602

    Google Scholar 

  3. Patarroyo M, Beatty PG, Fabre JW, Gahmberg CG (1985) Identification of a cell surface protein complex mediating phorbol ester-induced adhesion (binding) among human mononuclear leukocytes. Scand J Immunol 22:171–182

    Article  CAS  PubMed  Google Scholar 

  4. Patarroyo M, Beatty PG, Serha CN, Gahmberg CG (1985) Identification of a cell surface glycoprotein mediating adhesion in human granulocytes. Scand J Immunol 22:619–631

    Article  CAS  PubMed  Google Scholar 

  5. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  CAS  PubMed  Google Scholar 

  6. Pytela R, Pierschbacher MD, Ruoslahti E (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191–198

    Article  CAS  PubMed  Google Scholar 

  7. Gahmberg CG, Tolvanen M, Kotovuori P (1997) Leukocyte adhesion. Structure and function of human leukocyte β2-integrins and their cellular ligands. Eur J Biochem 245:215–232

    Article  CAS  PubMed  Google Scholar 

  8. Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Grönholm M (2009) Regulation of integrin activity and signaling. Biochim Biophys Acta 1790:431–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hogg N, Patzak I and Willenbrock F (2011) The insider’s guide to leukocyte integrin signaling and function. Nat Rev Immunol 11:416–426

    Google Scholar 

  10. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  11. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  CAS  PubMed  Google Scholar 

  12. Calderwood DA (2004) Integrin activation. J Cell Sci 117:657–666

    Article  CAS  PubMed  Google Scholar 

  13. Gahmberg CG (1997) Leukocyte adhesion. CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol 9:643–650

    Article  CAS  PubMed  Google Scholar 

  14. Patarroyo M, Clark EA, Prieto J, Kantor C, Gahmberg CG (1987) Identification of a novel adhesion molecule in human leukocytes by monoclonal antibody LB-2. FEBS Lett 210:127–131

    Article  CAS  PubMed  Google Scholar 

  15. Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137:1270–1274

    CAS  PubMed  Google Scholar 

  16. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  17. Lim J, Hotchin NA (2012) Signalling mechanisms of the leukocyte integrin αMβ2: current and future perspectives. Biol Cell 104:631–640

    Article  CAS  PubMed  Google Scholar 

  18. Tan SM (2012) The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosc rep 32:241–269

    Article  CAS  Google Scholar 

  19. Castro FVV, Tutt AL, White AL, Teeling JL, James S, French RR, Glennie MJ (2008) CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. Eur J Immunol 38:2263–2273

    Article  CAS  PubMed  Google Scholar 

  20. Wu H, Gower RM, Wang H, Dai Perrard X-Y, Ma R, Bullar DC, Burns AR, Paul A, Smith WC, Simon SI, Ballantyne CM (2009) Functional role of CD11c + monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119:2708–2717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lee JO, Rieu P, Arnaout AM, Liddington R (1995) Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    Article  CAS  PubMed  Google Scholar 

  22. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout AM (2001) Crystal structure of the extracellular segment of integrin αVβ3. Science 294:339–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Xie C, Zhu J, Chen X, Mi L, Nishida N (2010) Structure of an integrin with an αI domain, complement receptor type 4. EMBO J 29:666–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vinogradova O, Haas T, Plow EF, Qin J (2000) A structural basis for integrin activation by the cytoplasmic tail of the aIIb-subunit. Proc Natl Acad Sci USA 97:1450–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vinogradova O, Velyvis A, Velyviene A, Bin Hu TA, Haas EF, Plow EF, Qin J (2002) A structural mechanism of integrin αIIbβ3 “Inside-out” activation as regulated by its cytoplasmic face. Cell 110:587–597

    Article  CAS  PubMed  Google Scholar 

  26. Bhunia A, Tang XY, Mohanram H, Tan SM, Bhattacharjya S (2009) NMR solution conformations and interactions of integrin alpha Lbeta2 cytoplasmic tails. J Biol Chem 284:3873–3884

    Article  CAS  PubMed  Google Scholar 

  27. Chua GL, Tang XY, Amalraj M, Tan SM, Bhattacharjya S (2011) Structures and interaction analyses of integrin αMβ2 cytoplasmic tails. J Biol Chem 286:43842–43854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chua GL, Tang XY, Patra AT, Tan SM, Bhattacharjya S (2012) Structure and binding interface of the cytosolic tails of αX β2 integrin. PLoS ONE 7:e41924. doi:10.1371/journal.pone.0041924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chua GL, Patra AT, Tan SM, Bhattacharjya S (2013) NMR structure of integrin α4 cytosolic tail and its interactions with paxillin. PLoS One 8:e55184. doi:10.1371/journal.pone.0055184

  30. Anthis NJ, Campbell ID (2011) The tail of integrin activation. Trends Biochem Sci 36:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bonet R, Vakonakis I, Campbell ID (2013) Characterization of 14-3-3-ζ interactions with integrin tails. J Mol Biol 425:3060–3072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Calderwood DA, Campbell ID, Critchley DR (2013) Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 14:503–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Das M, Ithychanda Qin J, Plow EF (2011) Migfilin and filamin as regulators of integrin activation in endothelial cells and neutrophils. PLoS ONE 6:e26355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kinashi T (2005) Intercellular signaling controlling integrin activation in lymphocytes. Nat Rev Immunol 5:546–555

    Article  CAS  PubMed  Google Scholar 

  35. Legate KR, Fässler R (2009) Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J Cell Sci 122:187–198

    Article  CAS  PubMed  Google Scholar 

  36. Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH (2010) Recreation of the terminal events in physiological integrin activation. J Cell Biol 188:157–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zahng Y, Wang H (2012) Integrin signalling and function in immune cells. Immunol 135:268–275

    Article  Google Scholar 

  38. Rantala JK, Pouwels J, Pellinen T, Veltel S, Laasola P, Mattila E, Potter CS, Duffy T, Sundberg JP, Kallioniemi O, Askari JA, Humphries MJ, Parsons M, Salmi M, Ivaska J (2011) SHARPIN is an endogenous inhibitor of β1-integrin activation. Nat Cell Biol 13:1315–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tremuth L, Kreis S, Melchior C, Hoebeke J, Ronde P, Plancon S, Takeda K, Kieffer N (2004) A fluorescence cell biology approach to map the second integrin-binding site of talin to a 130-amino acid sequence within the rod domain. J Biol Chem 279:22258–22266

    Article  CAS  PubMed  Google Scholar 

  41. Fagerholm S, Morrice N, Gahmberg CG, Cohen P (2002) Phosphorylation of the cytoplasmic domain of the integrin CD18 chain by protein kinase C isoforms in leukocytes. J Biol Chem 277:1728–1738

    Article  CAS  PubMed  Google Scholar 

  42. Takala H, Nurminen E, Nurmi SM, Aatonen M, Strandin T, Takatalo TK, Gahmberg CG, Ylänne, Fagerholm SC (2008) β2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding. Blood 112:1853–1862

    Google Scholar 

  43. Fagerholm S, Hilden TJ, Gahmberg CG (2004) P marks the spot: site-specific integrin phosphorylation regulates molecular interactions. Trends Biochem Sci 29:504–512

    Article  CAS  PubMed  Google Scholar 

  44. Chatila TA, Geha RS, Arnaout MA (1989) Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J Cell Biol 109:3435–3444

    Article  CAS  PubMed  Google Scholar 

  45. Valmu L, Autero M, Siljander P, Patarroyo M, Gahmberg CG (1991) Phosphorylation of the ß-subunit of CD11/CD18 integrins by protein kinase C correlates with leukocyte adhesion. Eur J Immunol 21:2857–2862

    Article  CAS  PubMed  Google Scholar 

  46. Hilden TJ, Valmu L, Kärkkäinen S, Gahmberg CG (2003) Threonine phosphorylation sites in the β2 and β7 leukocyte integrin polypeptides. J Immunol 170:4170–4177

    Article  CAS  PubMed  Google Scholar 

  47. Fagerholm SC, Hilden TJ, Nurmi SM, Gahmberg CG (2005) Specific integrin α and β chain phosphorylations regulate LFA-1 activation through affinity-dependent and –independent mechanisms. J Cell Biol 171:705–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Fagerholm SC, Varis M, Stefanidakis M, Hilden TJ, Gahmberg CG (2006) α-chain phosphorylation of the human leukocyte CD11b/CD18 (Mac-1) integrin is pivotal for integrin activation to bind ICAMs and leukocyte extravasation in vivo. Blood 108:3379–3386

    Article  CAS  PubMed  Google Scholar 

  49. Uotila L, Aatonen M, Gahmberg CG (2013) Integrin CD11c/CD18 α-chain phosphorylation is functionally important. J Biol Chem 288:33494–33499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Valmu L, Hilden T, van Willigen G, Gahmberg CG (1999) Characterization of β2 (CD18) integrin phosphorylation in phorbol ester activated T lymphocytes. Biochem J 339:119–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Fagerholm S, Prescott A, Cohen P, Gahmberg CG (2001) An essential role for calmodulin in regulating human T cell aggregation. FEBS Lett 491:131–136

    Article  CAS  PubMed  Google Scholar 

  52. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature 379:91–96

    Article  CAS  PubMed  Google Scholar 

  53. Mou F, Praskova M, Xia F, Van Buren D, Hock H, Avruch J, Zhou D (2012) The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J Exp Med 209:741–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gonzalez AM, Claiborne J, Jones JCR (2008) Integrin cross-talk in endothelial cells is regulated by protein kinase A and protein phosphatase 1. J Biol Chem 283:31849–31860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Strömblad S (2010) p21-activated kinase 4 phosphorylation of integrin β5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 285:23699–23710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fu H, Subramanian RR, Masters S (2000) 14-3-3 proteins: structure, function, and regulation. Ann Rev Pharmac Toxicol 40:617–647

    Article  CAS  Google Scholar 

  57. Grönholm M, Jahan F, Marchesan S, Karvonen U, Aatonen M, Narumanchi S, Gahmberg CG (2011) TCR-induced activation of LFA-1 involves signaling through Tiam1. J Immunol 187:3613–3619

    Article  PubMed  Google Scholar 

  58. Nurmi SM, Autero M, Raunio AK, Gahmberg CG, Fagerholm SC (2007) Phosphorylation of the LFA-1 integrin β2-chain on Thr-758 leads to adhesion, Rac-1/Cdc42 activation and stimulation of CD69 expression in human T cells. J Biol Chem 282:968–975

    Article  CAS  PubMed  Google Scholar 

  59. Lim J, Hotchin NA, Caron E (2011) Ser756 of β2 integrin controls Rap1 activity during inside-out activation of αMβ2. Biochem J 437:461–467

    Article  CAS  PubMed  Google Scholar 

  60. Petruzzelli L, Maduzia L, Springer TA (1995) Activation of lymphocyte function-associated molecule-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) mimicked by an antibody directed against CD18. J Immunol 155:854–866

    CAS  PubMed  Google Scholar 

  61. Kotovuori A, Pessa-Morikawa T, Kotovuori P, Nortamo P, Gahmberg CG (1999) ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J Immunol 162:6613–6620

    CAS  PubMed  Google Scholar 

  62. Li R, Nortamo P, Kantor C, Kovanen P, Timonen T, Gahmberg CG (1993) A leukocyte integrin binding peptide from intercellular adhesion molecule-2 stimulates T cell adhesion and natural killer cell activity. J Biol Chem 268:21474–21477

    CAS  PubMed  Google Scholar 

  63. Perez OD, Mitchell D, Jager GC, South S, Murriel C, McBride J, Herzenberg LA, Kinoshita S, Nolan GP (2003) Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nat Immunol 4:1083–1092

    Article  CAS  PubMed  Google Scholar 

  64. Valmu L, Gahmberg CG (1995) Treatment with okadaic acid reveals strong threonine phosphorylation of CD18 after activation of CD11/CD18 leukocyte integrin with phorbol esters or CD3 antibodies. J Immunol 155:1175–1183

    CAS  PubMed  Google Scholar 

  65. Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, McGlade J, Liddington RC, Ginsberg MH (2003) Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA 100:2272–2277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Law DA, Nannizzi-Alaimo L, Phillips DR (1996) Outside-in integrin signal transduction: αβ-(GPIIb-IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 271:10811–10815

    Article  CAS  PubMed  Google Scholar 

  67. Blystone SD, Lindberg FP, Williams MP, McHugh K, Brown EJ (1996) Inducible tyrosine phosphorylation of the β3 integrin requires the αv integrin cytoplasmic tail. J Biol Chem 271:31458–31462

    Article  CAS  PubMed  Google Scholar 

  68. Blystone SD (2002) Kinetic regulation of β3 integrin tyrosine phosphorylation. J Biol Chem 277:46886–46890

    Article  CAS  PubMed  Google Scholar 

  69. Phillips DR, Prasad KSS, Manganello J, Bao M, Nannizzi-Alaimo L (2001) Integrin tyrosine phosphorylation in platelet signaling. Curr Opin Cell Biol 13:546–554

    Article  CAS  PubMed  Google Scholar 

  70. Sakai T, Jove R, Fässler R, Mosher DF (2001) Role of the cytoplasmic tyrosines of {beta}1A integrins in transformation by v-src. Proc Natl Acad Sci USA 98:3808–3813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wennerberg K, Armulik A, Sakai T, Karlsson M, Fässler R, Schaefer EM, Mosher DF, Johansson S (2000) The cytoplasmic tyrosines of integrin subunit β1 are involved in focal adhesion kinase activation. Mol Cell Biol 20:5758–5768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ling K, Doughman RL, Iyer VV, Firestone AJ, Bairstow SF, Mosher DF, Schaller MD, Anderson RA (2003) Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin–talin switch. J Cell Biol 163:1339–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Fabbri M, Fumagalli L, Bossi G, Bianchi E, Bender JR, Pardi R (1999) A tyrosine-based sorting signal in the β2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand-supported migration. EMBO J 18:4915–4925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Morrison VL, MacPherson M, Savinko T, Lek HS, Prescott A, Fagerholm SC (2013) The β2 integrin–kindlin-3 interaction is essential for T-cell homing but dispensable for T-cell activation in vivo. Blood 122:1428–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Choi EY, Chavakis E, Czabanka MA, Langer HF, Fraemohs L, Economopoulou M, Kundu RK, Orlandi A, Zheng YY, Prieto RA, Ballantyne CM, Constant SL, Aird WC, Papayannopoulou T, Gahmberg CG, Udey MC, Vajkoczy P, Quertermous T, Dimmeler S, Weber C, Chavakis T (2008) Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 322:1101–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Pouwels J, de Franceschi N, Mattila E, Potter C, Sundberg JP, Hogg N, Gahmberg CG, Salmi M, Ivaska J (2013) SHARPIN regulates uropod detachment in migrating lymphocytes. Cell Rep 5:619–628

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl G. Gahmberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gahmberg, C.G., Grönholm, M., Uotila, L.M. (2014). Regulation of Integrin Activity by Phosphorylation. In: Gullberg, D. (eds) I Domain Integrins. Advances in Experimental Medicine and Biology, vol 819. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9153-3_6

Download citation

Publish with us

Policies and ethics