Challenges of Image-Based Crowd-Sourcing for Situation Awareness in Disaster Management

  • Guillaume Moreau
  • Myriam Servières
  • Jean-Marie Normand
  • Morgan Magnin
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

One of the main issues for authorities in disaster management is to build clear situation awareness that is consistent and accurate in both space and time. Authorities usually have Geographical Information Systems (GIS) for reference data. One current trend of GIS is the use of crowd sourcing, i.e. gather information from the public to build very large databases that would be very costly otherwise. The OpenStreetMap project is one famous example of this. One can easily imagine that, provided some communications networks are available, photographs shot with smartphones could help to build knowledge about the disaster scene. Advantages would be that costly sensor networks would be less necessary, more objectivity would come from pictures than from the public interpretation and that a huge amount of data could be collected very fast. Yet this raises a number of challenges that we will discuss in this paper: the first is geo-referencing of pictures, i.e. locating the pictures received with respect to the current GIS. Even if GPS are more and more common on smartphones, not all pictures will have GPS coordinates and GPS accuracy might not be enough. The second one is the need for a spatio-temporal data model to store and retrieve redundant and uncertain data, the third one is the need for new visualization techniques given the amount of data that will be stored. Finally, legal and ethical issues are raised by the use of massive images.

References

  1. 1.
    Arth C, Wagner D, Klopschitz M, Irschara A, Schmalstieg D (2009) Wide area localization on mobile phones. In: ISMAR, Orlando, pp 73–82Google Scholar
  2. 2.
    Arth C, Klopschitz M, Reitmayr G, Schmalstieg D (2011) Real-time self-localization from panoramic images on mobile devices. In: ISMAR, Basel, pp 37–46Google Scholar
  3. 3.
    Assilzadeh H, Levy JK, Wang X (2010) Landslide catastrophes and disaster risk reduction: a GIS framework for landslide prevention and management. Remote Sens 2:2259–2273. doi:10.3390/rs2092259 CrossRefGoogle Scholar
  4. 4.
    Beard K (2006) Modeling change in space and time: an event based approach. In: Innovations in GIS: dynamic and mobile GIS: investigating change in space and time. Taylor & Francis, Hoboken, pp 55–74Google Scholar
  5. 5.
    Bioret N (2010) Image geolocazation using a GIS. PhD thesis (in french), École Centrale de NantesGoogle Scholar
  6. 6.
    De Runz C (2008) Imperfection, temps et espace: modélisation, analyse et visualisation dans un SIG archéologique. PhD thesis, université de ReimsGoogle Scholar
  7. 7.
    Desjardin E, de Runz C, Pargny D, Nocent O (2012) Modélisation d’un SIG archéologique et développement d’outils d’analyse prenant en compte l’imperfection de l’information. RIG 22(3):367–387. doi:10.3166/rig.22.367-387 Google Scholar
  8. 8.
    Duda KA, Abrams M (2012) Aster satellite observations for international disaster management. Proc IEEE 100(10):2798–2811CrossRefGoogle Scholar
  9. 9.
    Friis-Christensen A, Tryfona N, Jensen C (2001) Requirements and research issues in geographic data modeling. In: Proceedings of the 9th ACM international symposium on advances in geographic information systems, Atlanta, pp 2–8Google Scholar
  10. 10.
    Gupta A, Lamba H, Kumaraguru P, Joshi A (2013) Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: International conference on world wide web companion, WWW’13 Companion, Rio de Janeiro, pp 729–736Google Scholar
  11. 11.
    Hayes C, Kesan J (2012) At war over CISPA: towards a reasonable balance between privacy and security. Illinois public law research paper (13-03)Google Scholar
  12. 12.
    He S, Moreau G, Martin J (2012) Footprint-based generalization of 3D building groups at medium level of detail for multi-scale urban visualization. Int J Adv Softw 5(3&4):377–387Google Scholar
  13. 13.
    Jha MN, Levy J, Gao Y (2008) Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance. Sensors 8(1):236–255CrossRefGoogle Scholar
  14. 14.
    Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proceedings of IEEE and ACM international workshop on augmented reality, San Francisco, pp 85–94. doi:10.1109/IWAR.1999.803809 Google Scholar
  15. 15.
    Klein G, Drummond T (2004) Tightly integrated sensor fusion for robust visual tracking. Image Vis Comput 22(10):769–776CrossRefGoogle Scholar
  16. 16.
    Laplanche F (2002) Conception de projet SIG avec UML. Liège: bulletin de la Société géographique de Liège 42:19–25Google Scholar
  17. 17.
    Lee GA, Dünser A, Kim S, Billinghurst M (2012) CityViewAR: a mobile outdoor AR application for city visualization. In: ISMAR AHM, Atlanta, pp 57–64Google Scholar
  18. 18.
    Minout M (2007) Modélisation des Aspects Temporels dans les Bases de Données Spatiales. PhD thesis, université libre de BruxellesGoogle Scholar
  19. 19.
    Miralles A (2005) Ingénierie des modèles pour les applications environnementales. PhD thesis, Montpellier universityGoogle Scholar
  20. 20.
  21. 21.
    Parent C, Spaccapietra S, Zimanyi E (2006) Conceptual modeling for traditional and spatio-temporal applications: the MADS approach. Springer, BerlinGoogle Scholar
  22. 22.
    Parent C, Spaccapietra S, Zimanyi E (2009) Semantic modeling for geographic information systems. In: Encyclopedia of database systems. Springer, New York, pp 2571–2576Google Scholar
  23. 23.
    Pelekis N, Theodoulidis B, Kopanakis I, Theodoridis Y (2005) Literature review of spatio-temporal database models. Knowl Eng Rev 19:235–274Google Scholar
  24. 24.
    Regidor E (2004) The use of personal data from medical records and biological materials: ethical perspectives and the basis for legal restrictions in health research. Soc Sci Med 59(9):1975–1984CrossRefGoogle Scholar
  25. 25.
    Reitmayr G, Drummond T (2006) Going out: robust model-based tracking for outdoor augmented reality. In: Proceedings of IEEE ISMAR’06, Santa Barbara, pp 109–118. doi:10.1109/ISMAR.2006.297801
  26. 26.
    Richter S, Hammitzsch M (2013) Development of an android app for notification and reporting of natural disaster such as earthquakes and tsunamis. General Assembly European Geosciences UnionGoogle Scholar
  27. 27.
    Roche S, Propeck-Zimmermann E, Mericskay B (2013) GeoWeb and crisis management: issues and perspectives of volunteered geographic information. GeoJournal 78:21–40. doi:10.1007/s10708-011-9423-9 CrossRefGoogle Scholar
  28. 28.
    Seo B-K, Park J-I, Park H (2011) Camera tracking using partially modeled 3-D objects with scene textures. In: ISVRI, Singapore, pp 293–298Google Scholar
  29. 29.
    Simon G (2011) Tracking-by-synthesis using point features and pyramidal blurring. In: ISMAR, Basel, pp 85–92. doi:10.1109/ISMAR.2011.6162875 Google Scholar
  30. 30.
    Simon G, Fitzgibbon A, Zisserman A (2000) Markerless tracking using planar structures in the scene. In: Proceedings of international symposium on augmented reality, Darmstadt, pp 120–128Google Scholar
  31. 31.
    Steinhoff U, Omercevic D, Perko R, Schiele B, Leonardis A (2007) How computer vision can help in outdoor positioning. Ambient Intell Lect Notes Comput Sci 4794:124–141. doi:10.1007/978-3-540-76652-0_8 CrossRefGoogle Scholar
  32. 32.
    Tan DR (1999) Personal privacy in the information age: comparison of internet data protection regulations in the United Stats and European union. Loy LA Int’l & Comp LJ 21:661Google Scholar
  33. 33.
    Tronin AA (2009) Satellite remote sensing in seismology. A review. Remote Sens 2(1):124–150CrossRefGoogle Scholar
  34. 34.
    Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280CrossRefGoogle Scholar
  35. 35.
    Uchiyama H, Saito H, Nivesse V, Servières M, Moreau G (2008) AR representation system for 3D GIS based on camera pose estimation using distribution of intersections. In: International Conference on Artificial Reality and Telexistence (ICAT), Yokohama, pp 218–225Google Scholar
  36. 36.
    Uddin K, Gurung DR, Giriraj A, Shrestha B (2013) Application of remote sensing and GIS for flood hazard management: a case study from Sindh Province, Pakistan. Am J Geogr Inf Syst 2(1):1–5. doi:10.5923/j.ajgis.20130201.01 Google Scholar
  37. 37.
    U.S. District Court for the Southern District of New York, Case agence france-presse v. morel, No. 10-02730, 11 (2013)Google Scholar
  38. 38.
    Vacchetti L, Lepetit V, Fua P (2003) Fusing online and offline information for stable 3D tracking in real-time. In: CVPR, II, Madison, vol 2, pp 241–248. doi:10.1109/CVPR.2003.1211476 Google Scholar
  39. 39.
    Ventura J, Hollerer T (2012) Wide-area scene mapping for mobile visual tracking. In: ISMAR, Atlanta, pp 3–12Google Scholar
  40. 40.
    Voigt S, Kemper T, Riedlinger T, Kiefl R, Scholte K, Mehl H (2007) Satellite image analysis for disaster and crisis-management support. Geosci Remote Sens 45(6):1520–1528CrossRefGoogle Scholar
  41. 41.
    Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D (2010) Real-time detection and tracking for augmented reality on mobile phones. IEEE Trans Vis Comput Graph 16(3):355–368CrossRefGoogle Scholar
  42. 42.
    Wolfson S, Lease M (2011) Look before you leap: legal pitfalls of crowdsourcing. Am Soc Inf Sci Technol 48(1):1–10CrossRefGoogle Scholar
  43. 43.
    Zaki C (2011) Modélisation Spatio-temporelle multi-échelle des données dans un SIG urbain. PhD thesis, École Centrale NantesGoogle Scholar
  44. 44.
    Zhang F, Tourre V, Moreau G (2013) A general strategy for semantic levels of details in 3D urban visualization. In: Eurographics workshop on urban data modelling and visualisation, Girona, pp 33–36Google Scholar
  45. 45.
    Zhu S, Morin L, Pressigout M, Moreau G, Servières M (2013) Video/GIS registration system based on skyline matching method. In: IEEE ICIP, Melbourne, pp 3632–3636Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Guillaume Moreau
    • 1
  • Myriam Servières
    • 2
  • Jean-Marie Normand
    • 2
  • Morgan Magnin
    • 2
  1. 1.Computer Science and Mathematics DepartmentÉcole Centrale de NantesNantes cedex 3France
  2. 2.École Centrale de NantesNantes cedex 3France

Personalised recommendations